LPDES PERMIT NO. LA0039390, AI NO. 2366, ACTIVITY NO. PER20050001

LPDES FACT SHEET AND RATIONALE

FOR THE DRAFT LOUISIANA POLLUTANT DISCHARGE ELIMINATION SYSTEM (LPDES) PERMIT TO DISCHARGE TO WATERS OF LOUISIANA

COMPANY/FACILITY:

Placid Refining Company LLC Placid Refining Company 1940 LA Highway I North Port Allen, Louisiana 70767

ISSUING OFFICE:

Louisiana Department of Environmental Quality (LDEQ)

Office of Environmental Services

Post Office Box 4313

Baton Rouge, Louisiana 70821-4313

PREPARED BY:

Jeffrey C. Ratcliff

Water and Waste Permits Division

Phone #: 225-219-3093

Email: jeffrey.ratcliff@la.gov

DATE PREPARED:

March 20, 2006

1. PERMIT STATUS

A. Reason For Permit Action:

Reissuance of a Louisiana Pollutant Discharge Elimination System (LPDES) permit for a 5-year term following regulations promulgated at LAC 33:IX.2711/40 CFR 122.46.

<u>LAC 33:IX Citations:</u> Unless otherwise stated, citations to LAC 33:IX refer to promulgated regulations listed at Louisiana Administrative Code, Title 33, Part IX.

40 CFR Citations: Unless otherwise stated, citations to 40 CFR refer to promulgated regulations listed at Title 40, Code of Federal Regulations in accordance with the dates specified at LAC 33:IX.2301.F, 4901, and 4903.

B. LPDES permit:

LA0039390

LPDES permit effective date: March 1, 2001 LPDES permit expiration date: February 28, 2006

C. Date Application Received: August 25, 2005 Additional Information Received: March 7, 2006

2. FACILITY INFORMATION

A. LOCATION – 1940 LA Highway 1 North in Port Allen, West Baton Rouge Parish (Latitude: 30° 28′ 33" Longitude: 91° 12′ 40")

B. FACILITY TYPE/ACTIVITY – According to the application, Placid Refining Company is a petroleum refinery that refines sweet crude oil to produce gasoline, diesel, jet fuel, petroleum gases, and naptha. Process operations include crude treatment, vacuum distillation, FCC/alkylation and solvent deasphalting. The facility includes a tank farm, terminal, marine – related transportation (dock), process units, wastewater treatment units, and a truck rack.

Permit LA0039390

AI No: 2366

Page 2

The facility is proposing to also transport tank draw water from a subsidiary terminal company located in Louisiana to the Port Allen facility. The terminal facility handles refined products produced at the refinery. The refined product in the tank draw water (approximately 1-5%) will be recovered in existing equipment for reprocessing and the remaining water will be treated in the existing wastewater treatment unit (Outfall 001). The amount brought onsite will not be more than 5,000 gallons per month.

C. TECHNOLOGY BASIS - (40 CFR Chapter 1, Subchapter N/Parts 401, and 405-471 have been adopted by reference at LAC 33:IX.4903)

Guideline	<u>Reference</u>
Petroleum Refining Point	40 CFR 419 Subpart B
Source Category	

Feedstock rate = 50 K bbl/day

Unit Process	Unit Process Rate (K bbl/day)
Atmospheric Crude Distillation	50
Crude Desalting	50
Vacuum Crude Distillation	25
Fluid Catalytic Cracking	20
Catalytic Reforming	8.5

Stormwater to Treatment System = 0.111 MGD

Other sources of technology based limits:

- 1. LDEQ Stormwater Guidance, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6)
- 2. LPDES General Permit for Hydrostatic Test Water Discharges (LAG670000), effective 2/1/03, modified on 3/1/03 and 9/1/05
- 3. Best Professional Judgement

D. FEE RATE

1. Fee Rating Facility Type: Major

Complexity Type: V
 Wastewater Type: II

4. SIC code: 2911

Permit LA0039390

AI No: 2366 Page 3

3. RECEIVING WATER

A. Mississippi River (Outfall 001)

Basin and Subsegment: Mississippi River Basin, Segment 070301

TSS (15%), mg/L: 50.8 mg/L

Average Hardness, mg/L: 154.0 mg/L

Critical Flow, CFS: 141,955 Mixing Zone Fraction: .333

Harmonic Mean Flow, CFS: 366,748

<u>Designated Uses</u> - primary contact recreation, secondary contact recreation, fish and

wildlife propagation, and drinking water supply.

Information based on the following: Recommendation(s) from the Engineering Section. Determinations of water quality characteristics were taken from ambient monitoring station No. 318 on the Mississippi River at the LA 10 ferry landing in St. Francisville, Louisiana, midstream.

B. Intracoastal Waterway via highway ditch (Outfalls 002, 003, 004, 005, 006, & 007)
 <u>Basin and Subsegment</u>: Terrebonne Basin, Segment 120109
 <u>Designated Uses</u> - primary contact recreation, secondary contact recreation, and fish

and wildlife propagation.

4. OUTFALL INFORMATION

Outfall 001

A. Discharge Type: Continuous discharge of treated process wastewater, treated

process area stormwater, treated sanitary wastewater, treated utility wastewaters (including, but not limited to boiler blowdown, cooling tower blowdown, boiler steam, and laboratory and terminal wastewaters), and tank draw water from a subsidiary terminal.

B. Treatment: Sedimentation

Flotation

Activated sludge Rapid sand filter Belt Filtration

C. Location: At the point of discharge from the treatment facility prior to

combining with the waters of the Mississippi River.

(Lat 30° 28' 28", Lon 91° 12' 8")

D. Flow: .844 MGD

E. Discharge Route: Mississippi River

F. Basin and Segment: Mississippi River Basin, segment 070301

G. Effluent Data: The effluent data are contained in Appendix C

Permit LA0039390

AI No: 2366 Page 4

Outfall 002

A. Discharge Type: Intermittent discharge of low contamination potential stormwater

runoff from the northern lay down area and parking lot.

B. Treatment: Oil/water separator

C. Location: At the point of discharge from the oil/water separator at the

northern lay down area of the facility prior to combining with other

waters. (Lat 30° 28' 33", Lon 91° 12' 40")

D. Flow: Intermittent

E. Discharge Route: Intracoastal Waterway via highway ditch

F. Basin and Segment: Terrebonne Basin, segment 120109

Outfall 003

A. Discharge Type: Intermittent discharge of low contamination potential stormwater

runoff from the boiler house, maintenance shop area, and

administrative parking lot.

B. Treatment: Oil/water separator

C. Location: At the point of discharge from the oil/water separator at boiler

control house and maintenance shop area of the facility prior to

combining with other waters. (Lat 30° 28' 31", Lon 91° 12' 40")

D. Flow: Intermittent

E. Discharge Route: Intracoastal Waterway via highway ditch

F. Basin and Segment: Terrebonne Basin, segment 120109

Outfall 004

A. Discharge Type: Intermittent discharge of low contamination potential stormwater

runoff from the west central plant area and storage lagoon.

B. Treatment: Oil/water separator

C. Location: At the point of discharge from the oil/water separator at the storage

lagoon prior to combining with other waters.

(Lat 30° 28' 28", Lon 91° 12' 39")

D. Flow: Intermittent

E. Discharge Route: Intracoastal Waterway via highway ditch

F. Basin and Segment: Terrebonne Basin, segment 120109

Permit LA0039390

AI No: 2366 Page 5

Outfall 005

A. Discharge Type: Intermittent discharge of low contamination potential stormwater

runoff from non-process areas surrounding the amine and sulphur

units.

B. Treatment: Oil/water separator

C. Location: At the point of discharge from the oil/water separator at the

southwest corner of the facility prior to combining with other waters. (Lat 30° 28' 23", Lon 91° 12' 35")

D. Flow: Intermittent

Intracoastal Waterway via highway ditch E. Discharge Route:

F. Basin and Segment: Terrebonne Basin, segment 120109

Outfall 006

A. Discharge Type: Intermittent discharge of low contamination potential stormwater

runoff from the tank farm (south central area of the facility), previously monitored uncontaminated stormwater runoff from the storage lagoon, and previously monitored hydrostatic test

wastewater from Internal Outfall 106.

B. Treatment: Oil/water separator

at the point of discharge from the oil/water separator in the south C. Location:

central area of the facility prior to combining with other waters.

(Lat 30° 28' 23", Lon 91° 12' 29")

D. Flow: Intermittent

E. Discharge Route: Intracoastal Waterway via highway ditch

F. Basin and Segment: Terrebonne Basin, segment 120109

Internal Outfall 106

A. Discharge Type: Discharge of hydrostatic test wastewater

B. Treatment: None

C. Location: At the point of discharge from the piping, vessel, and/or tank being

tested prior to mixing with other waters of Final Outfall 006

D. Flow: Varies

E. Discharge Route: Through Final Outfall 006

Permit LA0039390

AI No: 2366 Page 6

Outfall 007

A. Discharge Type:

Intermittent discharge of low contamination potential stormwater

runoff from the tank farm area.

B. Treatment:

Oil/water separator

C. Location:

at the point of discharge from the oil/water separator at the light ends storage area and adjacent areas of the facility prior to combining with other waters. (Lat 30° 28' 23", Lon 91° 12' 22")

D. Flow:

Intermittent

E. Discharge Route:

Intracoastal Waterway via highway ditch

F. Basin and Segment: Terrebonne Basin, segment 120109

PREVIOUS EFFLUENT LIMITATIONS

See Appendix D - previous permit limits.

6. SUMMARY OF PROPOSED PERMIT CHANGES

Outfall 001

- 1. The outfall description has been changed for clarification purposes. The change consists of listing the wastewater types that constitute the utility wastewaters that are discharged through Outfall 001.
- 2. Tank draw water from a subsidiary terminal company has been incorporated as an additional wastewater type of Outfall 001.
- 3. The effluent limitations for BOD₅, TSS, Oil & Grease, COD, Ammonia, Sulfide, Phenolic Compounds, Total Chromium, and Chromium (6+) have decreased due to current production rates.
- 4. Total mercury has been removed from this proposed LPDES permit. Total mercury was added in the current LPDES permit based on water quality issues. According to Louisiana's Final 2004 Section 303(d) List of Impaired Waterbodies Requiring a TMDL (2004 List), the Mississippi River Basin, Segment No. 070301 does not have any listed impairments on the 303(d) list and is in compliance with water quality standards. In addition, a water quality screen was conducted for mercury (see Appendix B) which revealed that this outfall did not require water quality based effluent limitations.

Outfall 006

1. Hydrostatic test water from Internal Outfall 106 has been added to the outfall description as an additional discharge from Outfall 006.

Statement of Basis - Placid Refining Company LLC Permit LA0039390 AI No: 2366 Page 7

Internal Outfall 106

1. Internal Outfall 106 (hydrostatic test water) has been added to this draft LPDES permit.

7. PROPOSED PERMIT LIMITS

The specific effluent limitations and/or conditions will be found in the draft permit. Development of permit limits are detailed in the Permit Limit Rationale section below.

8. PERMIT LIMIT RATIONALE

The following section sets forth the principal facts and the significant factual, legal, methodological, and policy questions considered in preparing the draft permit. Also set forth are any calculations or other explanations of the derivation of specific effluent limitations and conditions, including a citation to the applicable effluent limitation guideline or performance standard provisions as required under LAC 33:IX.2707/40 CFR Part 122.44 and reasons why they are applicable or an explanation of how the alternate effluent limitations were developed.

A. <u>TECHNOLOGY-BASED VERSUS WATER QUALITY STANDARDS-BASED EFFLUENT LIMITATIONS AND CONDITIONS</u>

Following regulations promulgated at LAC 33:IX.2707.L.2.b/40 CFR Part 122.44(1)(2)(ii), the draft permit limits are based on either technology-based effluent limits pursuant to LAC 33:IX.2707.A/40 CFR Part 122.44(a) or on State water quality standards and requirements pursuant to LAC 33:IX.2707.D/40 CFR Part 122.44(d), whichever are more stringent.

B. <u>TECHNOLOGY-BASED EFFLUENT LIMITATIONS</u>, <u>MONITORING FREQUENCIES AND CONDITIONS</u>

Regulations promulgated at LAC 33:IX.2707.A/40 CFR Part 122.44(a) require technology-based effluent limitations to be placed in LPDES permits based on effluent limitations guidelines where applicable, on BPJ (best professional judgement) in the absence of guidelines, or on a combination of the two. The permittee is subject to Best Practicable Control Technology Currently Available (BPT) and Best Available Technology Economically Achievable (BAT) effluent limitation guidelines listed below:

Manufacturing Operation Petroleum Refining Point Source Category Guideline 40 CFR 419 Subpart B

Calculations and basis of permit limitations are found at Appendix A and associated appendices. See below for site-specific considerations.

Permit LA0039390

AI No: 2366 Page 8

C. WATER QUALITY-BASED EFFLUENT LIMITATIONS

Technology-based effluent limitations and/or specific analytical results from the permittee's application were screened against state water quality numerical standard based limits by following guidance procedures established in the <u>Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards</u>, LDEQ, September 27, 2001. Calculations, results, and documentation are given in Appendix B.

In accordance with LAC 33:IX.2707.D.1/40 CFR § 122.44(d)(1), the existing (or potential) discharge (s) was evaluated in accordance with the <u>Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards</u>, LDEQ, September 27, 2001, to determine whether pollutants would be discharged "at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any state water quality standard." Calculations, results, and documentation are given in Appendix B.

The following pollutants received water quality based effluent limits:

None

Minimum quantification levels (MQL's) for state water quality numerical standards-based effluent limitations are set at the values listed in the <u>Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards</u>, LDEQ, September 27, 2001. They are also listed in Part II of the permit.

D. MONITORING FREQUENCIES

Regulations require permits to establish monitoring requirements to yield data representative of the monitored activity [LAC 33:IX.2715/40 CFR 122.48(b)] and to assure compliance with permit limitations [LAC 33:IX.2707.I./40 CFR 122.44(I)]. Specific monitoring frequencies per outfall are listed in Section E.

E. OUTFALL SPECIFIC RATIONALES

Outfall 001

1. General Comments

According to the application, this outfall discharges treated process wastewater, treated process area stormwater, treated sanitary wastewater, treated utility wastewaters (including, but limited to including, but not limited to boiler blowdown, cooling tower blowdown, boiler steam, and laboratory and terminal wastewaters), and tank draw water from a subsidiary terminal company located in Louisiana.

Permit LA0039390

AI No: 2366

Page 9

2. Effluent Limitations, Monitoring Frequencies, and Sample Types

EFFLUENT	LIMITATION Units (Specify)		MONTORING R	EQUIREMENTS
CHARACTERISTIC	MONTHLY AVERAGE	DAILY MAXIMUM	MEASUREMENT FREQUENCY	SAMPLE TYPE
Flow (MGD)	Report	Report	Continuous	Recorder
pH – Range Excursions (Continuous Monitoring), Number of Events > 60 Minutes	0*		Continuous	Recorder
pH - Range Excursions (Continuous Monitoring) Monthly Total Accumulated Time in Minutes	446°		Continuous	Recorder
pH - Minimum/Maximum Values (Standard Units)	Report Minimum	Report Maximum	Continuous	Recorder
BOD ₅	276 lbs/day	497 lbs/day	3/week	24 - hr Composite
TSS	221 lbs/day	347 lbs/day	2/week	24 - hr Composite
Oil & Grease	81 lbs/day	152 lbs/day	3/week	Grab
COD	1924 lbs/day	3719 lbs/day	3/week	24 - hr Composite
Ammonia (as N)	137 lbs/day	302 lbs/day	1/week	24 - hr Composite
Sulfide (as S)	1.3 lbs/day	3.0 lbs/day	1/week	Grab
Phenolic Compounds	1.5 lbs/day	3.7 lbs/day	1/week	Grab
Total Chromium	1.8 lbs/day	5.2 lbs/day	1/year	24 - hr Composite
Chromium (6+)	0.2 lbs/day	0.4 lbs/day	1/year	24 - hr Composite
Biomonitoring	See Below	See Below	1/year	See Below

^{*} The pH shall be within the range of 6.0 - 9.0 standard units at all times subject to the continuous monitoring pH range excursion provisions at Part II.I

<u>Flow</u> - The flow requirements for reporting the monthly average flow and daily maximum flow are retained from the current LPDES permit. This requirement is consistent with LAC 33:IX.2707.I.1.b/40 CFR 122.44(I)(1)(ii). The monitoring frequency is continuous by recorder.

<u>pH</u> - The limitations and reporting requirements for pH are retained from the current LPDES permit. The requirements are based on LAC 33:IX.1113.C.1 and 40 CFR 419 Subpart B. The monitoring frequency is continuous by recorder.

BOD₅, TSS, Oil & Grease, COD, Ammonia (as N), Sulfide (as S), Phenolic Compounds, Total Chromium, and Chromium (6+) – The monthly average and daily maximum effluent limitations for BOD₅, TSS, oil & grease, COD, ammonia (as N), sulfide (as S), phenolic compounds, total chromium, and chromium (6+) have decreased due to current production rates. These limitations are based on 40 CFR 419 Subpart B. The monitoring frequencies and sample types for each parameter are retained from the current LPDES permit.

Permit LA0039390

AI No: 2366 Page 10

<u>Biomonitoring Requirements</u> - It has been determined that there may be pollutants present in the effluent which may have the potential to cause toxic conditions in the receiving stream. The State of Louisiana has established a narrative criteria which states, "toxic substances shall not be present in quantities that alone or in combination will be toxic to plant or animal life." The Office of Environmental Services requires the use of the most recent EPA biomonitoring protocols.

Whole effluent biomonitoring is the most direct measure of potential toxicity which incorporates both the effects of synergism of effluent components and receiving stream water quality characteristics. Biomonitoring of the effluent is, therefore, required as a condition of this permit to assess potential toxicity. The biomonitoring procedures stipulated as a condition of this permit for Outfall 001 are as follows:

TOXICITY TESTS

Acute static renewal 48-hour definitive toxicity test using fathead minnow (Pimephales promelas)

FREQUENCY

once per year

Acute static renewal 48-hour definitive toxicity test using <u>Daphnia pulex</u> once per year

Toxicity tests shall be performed in accordance with protocols described in the latest revision of the "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms." The stipulated test species are appropriate to measure the toxicity of the effluent consistent with the requirements of the State water quality standards. The biomonitoring frequency has been established to reflect the likelihood of ambient toxicity and to provide data representative of the toxic potential of the facility's discharge in accordance with regulations promulgated at LAC 33:1X.2715/40 CFR Part 122.48.

Results of all dilutions as well as the associated chemical monitoring of pH, temperature, hardness, dissolved oxygen, conductivity, and salinity shall be documented in a full report according to the test method publication mentioned in the previous paragraph. The permittee shall submit a copy of the first full report to the Office of Environmental Compliance. However, the full report and subsequent reports are to be retained for three (3) years following the provisions of Part III.C.3 of this permit. The permit requires the submission of certain toxicity testing information as an attachment to the Discharge Monitoring Report.

This permit may be reopened to require effluent limits, additional testing, and/or other appropriate actions to address toxicity if biomonitoring data show actual or potential ambient toxicity to be the result of the permittee's discharge to the receiving stream or water body. Modification or revocation of the permit is subject to the provisions of LAC 33:IX.3105/40 CFR 124.5. Accelerated or intensified toxicity testing may be required in accordance with Section 308 of the Clean Water Act.

Permit LA0039390

Al No: 2366 Page 11

<u>Dilution Series</u> - The permit requires five (5) dilutions in addition to the control (0% effluent) to be used in the toxicity tests. These additional effluent concentrations shall be 0.012%, 0.016%, 0.021%, 0.028%, and 0.037%. The low-flow effluent concentration (critical dilution) is defined as 0.028% effluent.

Outfall 002

1. General Comments

According to the application, this outfall discharges low contamination potential stormwater runoff. This outfall drains an area of approximately 8.87 acres of which a small fraction is impervious. The area drained by this outfall consists of a large gravel and grass laydown area, two warehouses, and a parking lot. The largest is in the laydown area.

2. Effluent Limitations, Monitoring Frequencies, and Sample Types

EFFLUENT CHARACTERISTIC	LIMITA Units (S		MONTORING REQUIREMENTS	
	MONTHLY AVERAGE	DAILY MAXIMUM	MEASUREMENT FREQUENCY*	SAMPLE TYPE
Flow (MGD)	Report	Report	1/quarter	Estimate
TOC		50 mg/L	1/quarter	Grab
Oil & Grease		15 mg/L	1/quarter	Grab
pH -Allowable Range (standard units)	6.0 Minimum	9.0 Maximum	1/quarter	Grab

^{*} When discharging

<u>Flow</u> - The flow requirements for reporting the monthly average flow and daily maximum flow are retained from the current LPDES permit. This requirement is consistent with LAC 33:IX.2707.I.1.b/40 CFR 122.44(I)(1)(ii). The monitoring frequency is once per quarter by estimating using best engineering judgement, when discharging.

Total Organic Carbon - The daily maximum discharge limit of 50 mg/L for total organic carbon is retained from the current LPDES permit. The limitation is based on Best Professional Judgement (BPJ) in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter, when discharging, by grab sample.

Oil and Grease - The daily maximum discharge limit of 15 mg/l for oil and grease is retained from the current LPDES permit. The limitation is based on BPJ in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter by grab sample, when discharging.

Permit LA0039390

Al No: 2366 Page 12

<u>pH</u> - The minimum discharge limit of 6.0 standard units and a maximum discharge limit of 9.0 standard units for pH are retained from the previous permit. The limitations are based on BPJ in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter by grab sample, when discharging.

Outfall 003

General Comments

According to the application, this outfall discharges low contamination potential stormwater runoff. This outfall drains an area of approximately 2.53 acres all of which is impervious. This area consists of mostly office or administration buildings, maintenance building and the boiler shed. This outfall has a gate valve which is opened on an as-needed basis.

2. <u>Effluent Limitations, Monitoring Frequencies, and Sample Types</u>

EFFLUENT	LIMITATION Units (Specify)		MONTORING REQUIREMENTS		
CHARACTERISTIC	MONTHLY AVERAGE	DAILY MAXIMUM	MEASUREMENT FREQUENCY*	SAMPLE TYPE	
Flow (MGD)	Report	Report	1/quarter	Estimate	
TOC		50 mg/L	1/quarter	Grab	
Oil & Grease		15 mg/L	1/quarter	Grab	
pH -Allowable Range (standard units)	6.0 Minimum	9.0 Maximum	1/quarter	Grab	

^{*} When discharging

Flow - The flow requirements for reporting the monthly average flow and daily maximum flow are retained from the current LPDES permit. This requirement is consistent with LAC 33:IX.2707.I.1.b/40 CFR 122.44(I)(1)(ii). The monitoring frequency is once per quarter by estimating using best engineering judgement, when discharging.

<u>Total Organic Carbon</u> - The daily maximum discharge limit of 50 mg/L for total organic carbon is retained from the current LPDES permit. The limitation is based on Best Professional Judgement (BPJ) in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter, when discharging, by grab sample.

Oil and Grease - The daily maximum discharge limit of 15 mg/l for oil and grease is retained from the current LPDES permit. The limitation is based on BPJ in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter by grab sample, when discharging.

Permit LA0039390

Al No: 2366 Page 13

<u>pH</u> - The minimum discharge limit of 6.0 standard units and a maximum discharge limit of 9.0 standard units for pH are retained from the previous permit. The limitations are based on BPJ in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter by grab sample, when discharging.

Outfall 004

1. General Comments

According to the application, this outfall discharges low contamination potential stormwater runoff. This outfall drains an area of approximately 11.15 acres which 9.19 are impervious. Of the impervious area, approximately 6.82 acres are process areas. This area is the main production area of the refinery. It contains the alkylation unit, the F.C.C. unit, the hydrotreater/reformer unit, the vacuum unit, the rose unit, the HTU/reformer unit, the cooling tower and the Crude Process Area. All process units are curbed and the water that falls within the curbed areas is routed to the wastewater treatment plant. Opening of a gate valve is required to allow this outfall to function. This outfall is valved and is only used when flooding conditions exist (i.e., typically less than once in 10 years).

2. Effluent Limitations, Monitoring Frequencies, and Sample Types

EFFLUENT	LIMITATION Units (Specify)		MONTORING REQUIREMENTS		
CHARACTERISTIC	MONTHLY AVERAGE	DAILY MAXIMUM	MEASUREMENT FREQUENCY*	SAMPLE TYPE	
Flow (MGD)	Report	Report	1/quarter	Estimate	
TOC		50 mg/L	1/quarter	Grab	
Oil & Grease		15 mg/L	1/quarter	Grab	
pH –Allowable Range (standard units)	6.0 Minimum	9.0 Maximum	1/quarter	Grab	

When discharging

Flow - The flow requirements for reporting the monthly average flow and daily maximum flow are retained from the current LPDES permit. This requirement is consistent with LAC 33:IX.2707.I.1.b/40 CFR 122.44(I)(1)(ii). The monitoring frequency is once per quarter by estimating using best engineering judgement, when discharging.

<u>Total Organic Carbon</u> - The daily maximum discharge limit of 50 mg/L for total organic carbon is retained from the current LPDES permit. The limitation is based on Best Professional Judgement (BPJ) in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter, when discharging, by grab sample.

Permit LA0039390 AI No: 2366

Page 14

Oil and Grease - The daily maximum discharge limit of 15 mg/l for oil and grease is retained from the current LPDES permit. The limitation is based on BPJ in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter by grab sample, when discharging.

<u>pH</u> - The minimum discharge limit of 6.0 standard units and a maximum discharge limit of 9.0 standard units for pH are retained from the previous permit. The limitations are based on BPJ in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter by grab sample, when discharging.

Outfall 005

1. General Comments

According to the application, this outfall discharges low contamination potential stormwater runoff. This outfall drains an area of approximately 5.76 acres of which 4.53 are impervious. Of the impervious area, approximately 3.61 acres are process areas. This area houses the remaining refining process units. The cyro unit, the amine/sulphur units, and the diesel HTU/sulphur recovery unit are located in this area All process units are curbed and the water that falls within the curbed areas is routed to the wastewater treatment plant. This outfall is valved and is only used when flooding conditions exist (i.e., typically less than once in 10 years).

2. <u>Effluent Limitations, Monitoring Frequencies, and Sample Types</u>

EFFLUENT		LIMITATION Units (Specify)		UIREMENTS
CHARACTERISTIC	MONTHLY AVERAGE	DAILY MAXIMUM	MEASUREMENT FREQUENCY*	SAMPLE TYPE
Flow (MGD)	Report	Report	1/quarter	Estimate
TOC		50 mg/L	1/quarter	Grab
Oil & Grease		15 mg/L	1/quarter	Grab
pH -Allowable Range (standard units)	6.0 Minimum	9.0 Maximum	1/quarter	Grab

^{*} When discharging

Flow - The flow requirements for reporting the monthly average flow and daily maximum flow are retained from the current LPDES permit. This requirement is consistent with LAC 33:IX.2707.I.1.b/40 CFR 122.44(I)(1)(ii). The monitoring frequency is once per quarter by estimating using best engineering judgement, when discharging.

Total Organic Carbon - The daily maximum discharge limit of 50 mg/L for total organic carbon is retained from the current LPDES permit. The limitation is based on Best Professional Judgement (BPJ) in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter, when discharging, by grab sample.

Permit LA0039390

Al No: 2366 Page 15

Oil and Grease - The daily maximum discharge limit of 15 mg/l for oil and grease is retained from the current LPDES permit. The limitation is based on BPJ in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter by grab sample, when discharging.

<u>pH</u> - The minimum discharge limit of 6.0 standard units and a maximum discharge limit of 9.0 standard units for pH are retained from the previous permit. The limitations are based on BPJ in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter by grab sample, when discharging.

Outfall 006

1. General Comments

According to the application, this outfall discharges low contamination potential stormwater runoff and previously monitored hydrostatic test water from Internal Outfall 106. This outfall drains the largest portion of the plant. This area is approximately 42.37 acres of which only 11.16 acres are impervious. This area houses the in-plant tank farm, the wastewater treatment facility, and the fire water pond. The wastewater treatment facility is curbed and contact rainwater from the curbed areas is pumped to the wastewater treatment plant. The tank farm diked areas are valved to keep spills out of the storm water system prior to removal.

2. Effluent Limitations, Monitoring Frequencies, and Sample Types

EFFLUENT	LIMITATION Units (Specify)		MONTORING REQUIREMENT	
CHARACTERISTIC	MONTHLY AVERAGE	DAILY MAXIMUM	MEASUREMENT FREQUENCY*	SAMPLE TYPE
Flow (MGD)	Report	Report	1/quarter	Estimate
TOC		50 mg/L	1/quarter	Grab
Oil & Grease	·	15 mg/L	1/quarter	Grab
pH –Allowable Range (standard units)	6.0 Minimum	9.0 Maximum	1/quarter	Grab

^{*} When discharging

Flow - The flow requirements for reporting the monthly average flow and daily maximum flow are retained from the current LPDES permit. This requirement is consistent with LAC 33:IX.2707.I.1.b/40 CFR 122.44(I)(1)(ii). The monitoring frequency is once per quarter by estimating using best engineering judgement, when discharging.

Total Organic Carbon - The daily maximum discharge limit of 50 mg/L for total organic carbon is retained from the current LPDES permit. The limitation is based on Best Professional Judgement (BPJ) in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter, when discharging, by grab sample.

Permit LA0039390

Al No: 2366 Page 16

Oil and Grease - The daily maximum discharge limit of 15 mg/l for oil and grease is retained from the current LPDES permit. The limitation is based on BPJ in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter by grab sample, when discharging.

<u>pH</u> - The minimum discharge limit of 6.0 standard units and a maximum discharge limit of 9.0 standard units for pH are retained from the previous permit. The limitations are based on BPJ in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter by grab sample, when discharging.

Internal Outfalls

In accordance with LAC 33:IX.3305/40 CFR 124.56, the following is an explanation for the establishment of Internal Outfall 106. Certain permit effluent limitations at the point of discharge are impractical because at the final discharge point the wastes at the point discharge are so diluted as to make monitoring impracticable. Therefore, in accordance with LAC 33:IX.2709.H/40 CFR 122.45(h) the internal outfalls described below are established.

Internal Outfall 106

1. General Comments

According to the application, this internal outfall discharges hydrostatic test water through Final Outfall 006.

2. Effluent Limitations, Monitoring Frequencies, and Sample Types

EFFLUENT CHARACTERISTIC	LIMITATION Units (Specify)		MONTORING REQUIREMENTS		
	MONTHLY AVERAGE	DAILY MAXIMUM	MEASUREMENT FREQUENCY	SAMPLE TYPE	
Flow (MGD)		Report	1/prior to discharge event	Estimate	
TSS		90 mg/L	1/prior to discharge event	Grab	
Oil & Grease		15 mg/L	1/prior to discharge event	Grab	
TOC*		50 mg/L	1/prior to discharge event	Grab	
Benzene**		50 μg/L	1/prior to discharge event	Grab	
Total BTEX**		250 μg/L	1/prior to discharge event	Grab	
Lead**		50 μg/L	1/prior to discharge event	Grab	

^{*} Total Organic Carbon (TOC) shall be measured on discharges from pipelines, flowlines, piping, vessels, or tanks which have previously been in service – i.e., those which are not new.

** Benzene, Total BTEX, and Total Lead shall be measured on discharges from pipelines, flowlines, piping, vessels, or tanks which have been used for the storage or transportation of liquid or gaseous petroleum hydrocarbons.

Permit LA0039390 AI No: 2366

Page 17

Flow, Total Suspended Solids, Oil & Grease, Total Organic Carbon, Benzene, Total BTEX, Lead, and pH - The effluent limitations and monitoring frequencies for flow, TSS, oil & grease, TOC, Benzene, Total BTEX, and Lead are based on LPDES General Permit for Hydrostatic Test Water Discharges (LAG670000), effective February 1, 2003, modified on March1, 2003 and September 1, 2005.

Additives such as corrosive inhibitors, bactericides, and dyes may not be added to test water to be discharged without prior written approval from this Office. Written requests for approval must include toxicity data for each additive proposed for use, as well as a clear description of the proposed discharge including projected volumes of wastewaters and additive levels in the wastewaters.

Outfall 007

1. General Comments

According to the application, this outfall discharges low contamination potential stormwater runoff. This outfall drains an area of approximately 4.28 acres of which only 0.39 acres are impervious. This area houses the LPG tanks and spheres. All discharges through this outfall are controlled through a gate valve from the tank area. All discharges are monitored for pollution composition before the valve is opened.

2. Effluent Limitations, Monitoring Frequencies, and Sample Types

EFFLUENT	LIMITATION Units (Specify)		MONTORING REQUIREMENT	
CHARACTERISTIC	MONTHLY AVERAGE	DAILY MAXIMUM	MEASUREMENT FREQUENCY*	SAMPLE TYPE
Flow (MGD)	Report	Report	1/quarter	Estimate
TOC		50 mg/L	1/quarter	Grab
Oil & Grease	ļ ————————————————————————————————————	15 mg/L	1/quarter	Grab
pH -Allowable Range (standard units)	6.0 Minimum	9.0 Maximum	1/quarter	Grab

^{*} When discharging

Flow - The flow requirements for reporting the monthly average flow and daily maximum flow are retained from the current LPDES permit. This requirement is consistent with LAC 33:IX.2707.I.1.b/40 CFR 122.44(I)(1)(ii). The monitoring frequency is once per quarter by estimating using best engineering judgement, when discharging.

Total Organic Carbon - The daily maximum discharge limit of 50 mg/L for total organic carbon is retained from the current LPDES permit. The limitation is based on Best Professional Judgement (BPJ) in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter, when discharging, by grab sample.

Oil and Grease - The daily maximum discharge limit of 15 mg/l for oil and grease is retained from the current LPDES permit. The limitation is based on BPJ in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter by grab sample, when discharging.

Permit LA0039390

Al No: 2366 Page 18

<u>pH</u> - The minimum discharge limit of 6.0 standard units and a maximum discharge limit of 9.0 standard units for pH are retained from the previous permit. The limitations are based on BPJ in accordance with this Office's guidance on stormwater, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6). Monitoring frequency remains at once per quarter by grab sample, when discharging.

Part II Specific Conditions

PERMIT REOPENER CLAUSE

In accordance with LAC 33:IX.2903, this permit may be modified, or alternatively, revoked and reissued, to comply with any applicable effluent standard or limitations issued or approved under sections 301(b)(2)(c) and (D); 304(b)(2); and 307(a)(2) of the Clean Water Act, if the effluent standard or limitations so issued or approved:

- 1. Contains different conditions or is otherwise more stringent than any effluent limitation in the permit; or
- Controls any pollutant not limited in the permit; or
- 3. Require reassessment due to change in 303(d) status of waterbody; or
- 4. Incorporates the results of any total maximum daily load allocation, which may be approved for the receiving water body.

STORMWATER POLLUTION PREVENTION PLAN (SWPPP) REQUIREMENT

In accordance with LAC 33:IX.2707.I.3 and 4 [40 CFR 122.44(I)(.3) and (4)], a Part II condition is proposed for applicability to all stormwater discharges from the facility, either through permitted outfalls or through outfalls which are not listed in the permit or as sheet flow. The Part II condition requires a Storm Water Pollution Prevention Plan (SWP3) within six (6) months of the effective date of the final permit, along with other requirements. If the permittee maintains other plans that contain duplicative information, that plan could be incorporated by reference into the SWP3. Examples of these type plans include, but are not limited to: Spill Prevention Control and Countermeasure Plan (SPCC), Best Management Plan (BMP), Response Plans, etc. The conditions will be found in the draft permit. Including Best Management Practice (BMP) controls in the form of a SWP3 is consistent with other LPDES and EPA permits regulating similar discharges of storm water associated with industrial activity, as defined at LAC 33:IX.2511.B.14 [(40 CFR 122.26(b)(14)].

Permit LA0039390

AI No: 2366 Page 19

9. COMPLIANCE HISTORY/COMMENTS

- A. A review of LDEQ records from the time period of January 2004, through December 2005 was conducted and revealed that Consolidated Compliance Order & Notice of Potential Penalty MM-CN-03-0114 was issued to Placid Refining Company on June 11, 2004 and was amended on January 10, 2006.
- B. The most recent inspection was conducted on November 3, 2005. No issues of concern were noted.
- C. A DMR review was completed for the period of January 2004 through December 2005. The following violations/excursions were noted.

<u>Date</u>	<u>Outfall</u>	<u>Parameter</u>	Permit Limit	Reported Value
2/28/05	002	TOC	50 mg/L	55.4 mg/L
2/28/05	002	Oil & Grease	15 mg/L	19.3 mg/L
5/31/05	001	TSS	577 lbs/day	714.8 lbs/day

10. WATER QUALITY CONSIDERATIONS

Mississippi River, Subsegment 070301

The discharges from Outfalls 001 of this facility consist of treated process wastewater, treated process area stormwater, treated sanitary wastewater, treated utility wastewaters (including, but not limited to boiler blowdown, cooling tower blowdown, boiler steam, and laboratory and terminal wastewaters), and tank draw water from a subsidiary terminal are to the Mississippi River of the Mississippi River Basin, Segment No. 070301. Louisiana's Final 2004 Section 303(d) List of Impaired Waterbodies Requiring a TMDL (2004 List) revealed that the Mississippi River Basin, Segment No. 070301 does not have any listed impairments on the 303(d) list and is in compliance with water quality standards.

Intracoastal Waterway, Subsegment 120109

The discharges from Outfalls 002, 003, 004, 005, 006, and 007 consist of low contamination potential stormwater and hydrostatic test water are to a highway dith; thence to the Intracoastal Waterway of the Terrebonne Basin; Segment 120109. Louisiana's Final 2004 Section 303(d) List of Impaired Waterbodies Requiring a TMDL (2004 List) revealed that the Terrebonne Basin, Segment 120109 is listed on the 303(d) list as being impaired with nutrients, organic enrichment/low DO, and pathogen indicators.

The discharges from Outfalls 002, 003, 004, 005, 006, and 007 are not suspected to cause or contribute to the organic enrichment/low DO impairments of the Intracoastal Waterway since the discharge is intermittent in nature. However, to protect against instances where the water may come into contact with organic enrichment/low DO substances, effluent limitations for TOC have been established in the permit.

The discharges from Outfalls 002, 003, 004, 005, 006, and 007 are not suspected to cause or contribute to nutrients or pathogen indicators; therefore, there has not been any effluent limitations established in this draft permit for nutrients or pathogen indicators.

11. ENDANGERED SPECIES

Permit LA0039390

AI No: 2366 Page 20

The receiving waterbodies, Subsegment 070301 and 120109 of the Mississippi River Basin and Terrebonne Basin, are not listed in Section II.2 of the Implementation Strategy as requiring consultation with the U.S. Fish and Wildlife Service (FWS). This strategy was submitted with a letter dated October 21, 2005, from Watson (FWS) to Gautreaux (LDEQ). Therefore, in accordance with the Memorandum of Understanding between the LDEQ and the FWS, no further informal (Section 7, Endangered Species Act) consultation is required. It was determined that the issuance of the LPDES permit is not likely to have an adverse effect on any endangered or candidate species or the critical habitat. The effluent limitations established in the permit ensure protection of aquatic life and maintenance of the receiving water as aquatic habitat.

12. HISTORIC SITES

The discharge is from an existing facility location, which does not include an expansion on undisturbed soils. Therefore, there should be no potential effect to sites or properties on or eligible for listing on the National Register of Historic Places, and in accordance with the "Memorandum of Understanding for the Protection of Historic Properties in Louisiana Regarding LPDES Permits" no consultation with the Louisiana State Historic Preservation Officer is required.

13. TENTATIVE DETERMINATION

On the basis of preliminary staff review, the Department of Environmental Quality has made a tentative determination to issue a permit for discharges described in the application.

14. PUBLIC NOTICES

Upon publication of the public notice, a public comment period shall begin on the date of publication and last for at least 30 days thereafter. During this period, any interested persons may submit written comments on the proposed issuance of LPDES individual permits and may request a public hearing to clarify issues involved. This Office's address is on the first page of the statement of basis. A request for a public hearing shall be in writing and shall state the nature of the issues proposed to be raised in the hearing.

Public notice published in:

A local newspaper of general circulation and The Office of Environmental Services Public Notice Mailing List.

Appendix A

LA0039390, A12366

Appendix A-1

Page 1

Calculation of Technology Based Limits for Placid Refining Company LLC

Out. 001

Refinery Guidelines, 40 CFR 419, Existing Source Only

TABLE 1

Spreadsheet: refinery.wk4

Developer: Bruce Fielding

Software: Lotus 4.0

Revision date: 09/07/00

Calculation Date: 03/14

DATA INPUT:

(+1)

FACILITY INFORMATION

(+6)

ANTI-BACKSLIDING INFORMATION:

Permittee:	Placid Refining Company LL	С	(**A)	(*B) 1*C	:)
Permit Number:	LA0039390, AI2366		Tech Old Te	ch Old Antiback	
Appendix:	Appendix A-1		Avg	Max0≠no scr	-
Concentration flow, (MGD):		PARAMETER	lb/day	lb/day1=OldvsG	L
Anti-backsliding, GL vs Old, 0=n, 1=y, 2=GL+Old	D			2≈01d+GL	,
Outfall number:	Out. 001	Conventional:			
40 CFR 419 Subpart, (A, B, C, D, or E):	В	BOD5			
Refinery Type:		TSS			
(Topping, Cracking, Petrochemical,	Cracking	Oil and Grease		*	
Lube, or Integragted					
		Nonconventional:			
(*2)		COD			
THROUGHPUT RATES	K bbl/day	TOC			
		Ammonia			
Feedstock (Crude Oil and NGL) Rate to Topping Unit(s)	: 50	Sulfide			
Process Unit Rates:	Input in Table 2	Total Phenolics			
(*3)		Metals:			
FLOW RATES	K gal/day gpm	Chromium (Total)			
		Chromium (6+)			
Ballast Flow:					
Stormwater Calculations	sq. feet acres	(*7)			
Process area, sq. ft. (or acres):		Conversion Utilit	ies:		
Number of Days (Default is 365):	365	mg/L>lbs/day	8.34		
	inches % runoff	gpm>MGD	0.00144		
Armual rainfall, inches:		gpm>K gal/day	1.44		
		ft3>gal	7.480519		
	K gal/day	inches>feet	0.083333		
Contaminated Stormwater to Treatment System	111	acres>sq. ft.	43560		

(*4)

RATIOS:

Ratio:

TOC:BODS (Default is 2.2, if needed):

Discharge fraction, default =1

Fraction:

1

Calculation of Technology Based Limits for Placid Refining Company LLC Out. 001

Calculation of Unit Process Rates and Unit Configuration Factors

		TABLE 2					
(*1)	(*2)	(*3)	(*4)	(=5)	(+6)	(*7)	
			បកវ	t Process	Rate		
		Unit		to		Unit	
	EPA	Process	Total	Feedstock	Process	Process	
	Process	Rate	Feedstock	Rate	Weighting	Config.	
CRUDE PROCESSES:	Number	K bbl/day	/ Rate	Ratio *	Factor =	Factor	
Atmospheric Crude Distillation	1	50	50	1	1	1	
Crude Desalting	2	50	50	1	3	3	
Vacuum Crude Distillation	3	25	50	0.5	ב	0.5	
TOTAL CRUDE PROCESSES FEEDSTOCK RATE=		125					
CRACKING AND COKING PROCESSES:							
Visbreaking	4	ū	50	٥	б	0	
Thermal Cracking	5	δ	50	۵	6	0	
Fluid Catalytic Cracking	6	20	50	0.4	6	2.4	
Moving Bed Catalytic Cracking	7	0	50	0	6	0	
Hydrocracking	10	0	50	0	6	0	
Delayed Coking	15	Ō	50	0	6	a	
Fluid Coking	16	0	50	D	6	0	
Hydrotreating	54	0	Not Appl	icable to	Refinery F	Process Conf.	ig. Factor
TOTAL CRACKING AND COKING PROCESSES FEEDSTOCK RATE=		20					
LUBE PROCESSES:							
Hydrofining, Hydrofinishing, Lube Hydrofinishing	21	0	50	0	13	0	
White Oil Manufacture	22	0	50	0	13	0	
Propane: Dewaxing, Deasphalting,	23	0	50	0	13	0	
Fractioning, Deresining							
Duo Sol, Solvent Treating, Solvent Extraction,	24	0	50	0	13	D	
Duotreating, Solvent Dewaxing,							
Solvent Deasphalt				•		_	
Lube Vacuum Tower, Oil Fractionation, Batch	25	0	50	0	13	D	
Still (Naphtha Strip), Bright Stock Treating							
Centrifuge and Chilling	26	٥	50	0	13	G	
Dewaxing: MEK, Ketone, MEK-Toluene	27	0	50	0	13	D	
Deciling (Wax)	28	0	50	0	13	0	
Naphthenic Lube Production	29	0	50	0	13	0	
SO2 Extraction	30	٥	50	0	13	0	
Wax Pressing	34	o	50	0	13	0	
Wax Plant (with Neutral Separation)	35	0	50	0	13	0	
Furfural Extracting	36	Q	50	û	13	a	
Clay Contacting - Percolation	37	0	50	0	13	0	
Wax Sweating	38	0	50	0	13	0	
Acid Treating	39	0	50	σ	13	٥	
Phenol Extraction	4 D	٥	50	0	13	0	

TOTAL LUBE PROCESS FEEDSTOCK RATE=

Calculation of Technology Based Limits for Placid Refining Company LLC

Out. 001

Calculation of Unit Process Rates, Unit Configuration, Process and Size Factors

TABLE 2 (continued)

(*1) (*2) (*3) (*4) (*5) (*6) (*7)

Unit Process Rate

			Unit		to		Unit	
	EPA	P	rocess	Total	Feedstock		Process	
	Process		Rate	Feedstoc	k Rate	Weighting	Config.	
ASPHALT PROCESSES:	Number	K	bbl/day	Rate	Ratio *	Factor =	Factor	
Asphalt Production	16		Û	50	0	12	0	
200 Deg. F Softening Point Unfluxed Asphalt	32		0	Not App	licable to	Refinery	Process Config.	Factor
Asphalt Oxidizing	43		Đ	50	0	12	O	
Asphalt Emulsifying	89		0	50	O	12	0	

TOTAL ASPHALT PROCESS FEEDSTOCK RATE=

0

REFORMING AND ALKYLATION PROCESSES:

H2SO4 Alkylation 8 0 Not Applicable to Refinery Process Config. Factor
Catalytic Reforming 12 8.5 Not Applicable to Refinery Process Config. Factor
TOTAL REFORMING AND ALKYLATION PROCESS FEEDSTOCK RATE= 8.5

TOTAL REFINERY PROCESS CONFIGURATION FACTOR=

4.9

	TABLE 3		TABLE 4	TABLE 5		
PROCESS	FACTORS BY S	SUBPART SIZE FAC	TORS BY SUBPART			
Total		K bbl/day		PROCESS GROUP FEEDSTOCK	RATES:	
Refinery Process	Cracking	Feedstock	Cracking			
Configuration	Subpart	(Stream Day)	Subpart	Process Group:	Feedstock Rat	te. K bbl/day:
	В		В	Crude:	125	
< 2.49	0.58	< 24.9	0.91	Cracking and Coking=	20	
2.5 to 3.49	0.63	25.0 to 49.9	0.95	Lube=	0	
3.5 to 4.49	0.74	50.0 to 74.9	1.04	Asphalt=	0	
4.5 to 5.49	0.88	75.0 to 99.9	1.13	Reforming and Alkylation:	= 8.5	
5.5 to 5.99	ב	100.0 to 124.9	1.23			
6.0 to 6.49	1,09	125.0 to 149.9	1.35			
6.5 to 6.99	1.19	150.0 to 174.9	1.41			
7.0 to 7.49	1.29	175.0 to 199.9	1.41			
7.5 to 7.99	1.41	200.0 to 224.9	1,41			
8.0 to 8.49	1.53	>=225.0	1.41			
8.5 to 8.99	1.67					
9.0 to 9.49	1.82	PROCESS FACTOR INPUT:				
9.5 to 9.99	1.89	Refinery Configuration =	4.9			
10.0 to 10.49	1.89					
10.5 to 10.99	1.89	SIZE FACTOR INPUT:				
11.0 to 11.49	1.89	Feedstock, X bbl/day =	50			
11.5 to 11.99	1.89					
12.0 to 12.49	1.89			•		

FACTOR REFERENCE

1.04 419.23(b)

Multiplier = Feedstock * Process Factor * Size Factor Multiplier = 45.76

1.89 SIZE FACTOR ≈

1.89 PROCESS FACTOR = 0.88 419.23(b)

1.89

1.89

12.5 to 12.99

13.0 to 13.49

13.5 to 13.99

>=14.00

Calculation of Technology Based Limits for Placid Refining Company LLC $$\operatorname{\textsc{Out}}-0.03

Conventional, nonconventional, and toxic refinery pollutant loading calculations $$\mathsf{TABLE}$\ 6$

40 CFR 419, Petroleum and Refining Guidelines

(*2)	(+2)	(1.3)	(+4)	(+5)	1-6	(*7)	(*8)	(+9)
	REPERENC	ES:	FACTOR	S:			LOADIN	GS:
			Cracking	Cracking		Discharg	eCracking	Cracking
			Subpart	Subpart		Fraction	Subpart	Subpart
PROCESS WASTEWATER	Subpa	rt B	В	В		Through	В	В
	Category:	Treatmt.	lb/K bbl	lb/K bbl		Outfall	lb/day	lb/day
PARAMETER	Cracking	Tech.	Avg	Max	Multiplie	er	Avg	Max
Conventional:								
BODS	419.24(a)	BCT	5.5	9.9	45.76	1	251.68	453.024
TSS	419.24(a)	BCT	4.4	6.9	45.76	3	201.344	315.744
Oil and Grease	419,24(a)	BCT	1.6	3	45.76	1	73.216	137.26
Nonconventional:								
COD	419.23(a)	BAT	38.4	74	45.76	1	1757.184	3386.24
TOC					45.76	1		
Ammonia	419.23(a)	BAT	3	6.6	45.76	1	137.28	302.016
Sulfide	419.23(a)	BAT	0.029	0.065	45.76	1	1.32704	2.9744
BPT Calculations for Total	Recoverab	le Phenol	ics, Tota	l Chromium,	, and Chromium (6	5+)		
Total Phenolics	419.22(a)	врт	0.036	0.074	45.76	1	1.64736	3.38624
Chromium (Total)	419.22(a)	BPT	0.088	0.15	45.76	1	4.02688	6.864
Chromium (6+)	419.22(a)	BPT	0.0056	0.012	45.76	1	0.256256	0.54912
BAT Calculations for Total	Recoverab	le Phenol	ics, Tota	l Chromium,		5+}		
					Table 2			
					Rate, K h	obl/day		
Total Phenolics								
Crude Processes	419.23(c)	BAT	0.003	0.013	125	1	0.375	1.625
Cracking & Coking	419.23(c)	BAT	0.036	0.147	20	1	0.72	2.94
Asphalt Processes	419.23(c)	BAT BAT	0.019	0.079 0.369				
	419.23(c)	BAT	0.032	0.132	8.5	1		1,122
Reforming and Alkylation	419.23(0)	BAI	0.032	0.132	8.5	1	0.272	1.122
Total Phenolics BAT:							1.367	\$.687
Chromium (Total)								
Crude Processes	419.23(c)	BAT	0.004	0.011	125	1	0.5	1.375
Cracking & Coking	419.23(c)	BAT	0.041	0.119	20	1	0.82	2.38
Asphalt Processes	419.23(c)	BAT	0.022	0,064				
Lube Processes	419.23(c)	BAT	0.104	0.299		* - *		
Reforming and Alkylation	419.23(c)	BAT	0.037	0.107	8.5	J	0.3145	0.9095
Total Chromium BAT:							1.6345	4.6645

Calculation of Technology Based Limits for Placid Refining Company LLC Out . 001

Conventional, nonconventional, and toxic refinery pollutant loading calculations TABLE 6 (continued)

40 CFR 415, Petroleum and Refining Guidelines

(*1)	(*2)	(*3)	(=4)	(*5)	(*6	(+7)	(*B)	(*9)
	REFERENC	ES:	FACTOR	RS:		Discharge	LOADIN	GS:
			Cracking	Cracking		Praction	Cracking	Cracking
			Subpart	Subpart		Outfall	Subpart	Subpart
PROCESS WASTEWATER	Subpa	rt B	В	В	Table 2		В	В
	Category:	Treatmt	. lb/K bbl	lb/K bbl	Group Fe	edstock	lb/day	lb/day
PARAMETER	Cracking	Tech.	Avg	Max	Rate, K	bbl/day	Avg	Max
Chromium (6+)								
Crude Processes	419.23(c)	BAT	0.0003	0.0007	125	1	0.0375	0.0875
Cracking & Coking	419.23(c)	TAE	0.0034	0.0076	20	1	0.068	0.152
Asphalt Processes	419.23(c)	BAT	0.0019	0.0041				
Lube Processes	419.23(c)	BAT	0.0087	0.0192				
Reforming and Alkylation	419.23(c)	BAT	0.0031	0.0069	8 .5	3	0.02635	0.05865
Chromium (6+) BAT:							0.13185	0.2981\$
Apply Most Stringent (BAT	or BPT) fo	r Totāl	Recoverabl	e Phenoli	cs, Total Chromiu	m, and Chr	omium (6	•):
Total Phenolics				~			1.367	3.38624
Chromium (Total)				*	· -		1.6345	4.6645
Chromium (6+)	• • •						0.13185	0.29815
			Cracking	Cracking		Discharge	Cracking	Cracking
	Subpa	rt B	Subpart	Subpart		Fraction	•	Subpart
BALLAST WATER	Category:	Treatmt		В		Through	В	В
	Cracking	Tech.	lb/K gal	lb/K gal		Outfall	lb/day	lb/day
PARAMETER			Avg	Max	K gal/da	Y	Avg	Max
Conventional								
BOD5	419.24(c)	BCT	0.21	0.4				
TSS	419.24(c)	BCT	0.17	0.26				
Oil and Grease	419.24 (c)	BCT	0.067	0.126				
Nonconventional								
COD	419.23 (d)	BAT	2	3.9				
TOC								

Page 6

Calculation of Technology Based Limits for Placid Refining Company LLC Out. 001

Conventional, nonconventional, and toxic refinery pollutant loading calculations TABLE 6 (continued)

40 CFR 419, Petroleum and Refining Guidelines

(*1)	(*2)	(*3)	(*4)	(*5)	(*6) (*7)	(*8)	(*9)
			Cracking	Cracking		Discharge	Cracking	Cracking
			Subpart	Subpart		Fraction	Subpart	Subpart
STORMWATER	Subpa	rt B	В	В		Through	B	B
	Category:	Treatmt	.lb/K gal	lb/K gal	Flow	Outfall	lb/day	lb/day
PARAMETER	Cracking	Tech.	Avg	Max	K gal/da	У	Avg	Мах
Conventional								
BODS	419.24(e)	BCT	0.22	0.4	111	1	24.42	44.4
TSS	419.24(e)	BCT	0.18	0.28	111	1	19.98	31.08
Oil and Grease	419.24 <i>le</i>)	BCT	0.067	0.13	111	1	7.437	14.43
Nonconventional								
COD	419.23(f)	BAT	1.5	3	111	3	166.5	333
TOC					111	3		
Total Phenolics	419.23(f)	TAH	0.0014	0.0029	111	1	0.1554	0.3219
Metals								
Chromium (Total)	419.23(f)	BAT	0.0018	0.005	111	1	0.1998	0.555
Chromium (6+)	419.23(f)	BAT	0.00023	0.00052	111	1	0.02553	0.05772

TABLE 7 TOTAL ALLOCATIONS = Process WW + Ballast Water + Contaminated SW (lbs/day)

	PROCESS	WASTEWATER	BA1	LLAST	STORM	WATER	TOTAL ALI	OCATION
	(+1)	(+2)	(+3)	{*4}	(*5)	(*6)	(*7)	(+9)
	Cracking	Cracking	Cracking	Cracking	Cracking	Cracking	Cracking	Cracking
	Subpart	Subpart	Subpart	Subpart	Subpart	Subpart	Subpart	Subpart
	В	В	Ð	B	B	Ð	В	В
PARAMETER	lb/day	lb/day	lb/day	lb/day	lb/day	lb/day	1b/day	lb/day
	Avg	Max	Avg	Max	Avg	Max	Avg	Max
Conventional								
BOD5	251.68	453.024			24.42	44.4	276.1	497.424
TSS	201.344	315.744			19.98	31.08	221.324	346.824
Oil and Grease	73.216	137.28			7,437	14.43	80.653	151.71
Nonconventional								
COD	1757.184	3386.24			166.5	333	1923.684	3719.24
TOC								
Ammonia	137.28	302.016			~ - ~		137.28	302.016
Sulfide	1.32704	2.9744			~ - ~		1.32704	2.9744
Total Phenolics	1.367	3.38624			0.1554	0.3219	1.5224	3.70014
Metals								
Chromium (Total)	1.6345	4.6645	~ - ~		0.1998	0.555	1.6343	5.2195
Chromium (6+)	0.13185	0.29815			0.02553	0.05772	0.15738	0.35587

LA0039390, A12366 Appendix A-1

Page 7

Calculation of Technology Based Limits for Placid Refining Company LLC

Out. 001

Anti-Backsliding Screening

TABLE 6

Anti-Backsliding Calculations, 40 CPR 122.44(i)l, LAC 33.1X.2361.L

(*2)	(*2)	(*3)	(*4)	(*5) (*6)	(*7)	(*B)	(*9)	(*10)
	G/L Val	G/L Val Te	ch Old Te	ech Old Antiback O	ut. 001 Oi	ut. 001 Out.	מסט נסט	. 001
	Avg	Max	Avg	Max0≈no scr.	Avg	Max	Avg	Мах
	lb/day	lb/day	lb/day	lb/day1=0ldvsGL	lb/day	lb/day	mg/L	mg/L
PARAMETER				2=0]d+GL				
Conventional:								
BODS	276.1	497.424		- - -	276	497		
TSS	221.324	346.824			221	347		
Oil and Grease	80.653	151.71	•		81	152		
Nonconventional:								
COD	1923.684	3719.24		- * -	1924	3719		
TOC								
Ammonia	137.28	302.016			137	302		
Sulfide	1.32704	2.9744			1.3	3.0		
Total Phenolics	1.5224	3.70814			1.5	3.7		
Metals:								
Chromium (Total)	1.8343	5.2195			3.B	5.2		
Chromium (6→)	0.15738	0.35587			0.2	0.4		

APPENDIX A-2 LA0039390, AI No. 2366

Documentation and Explanation of Technology Calculations and Associated Lotus Spreadsheet

This is a technology spreadsheet covering the effluent guidelines for petroleum refining, 40 CFR 419. The refinery guidelines consists of 5 Subparts; Suppart A-Topping, Subpart B-Cracking, Subpart C-Petrochemical, Subpart D-Lube, and Subpart E-Integrated. Treatment technologies consist of Best Available Technology Economically Achievable (BAT), Best Conventional Technology (BCT), and Best Practicable Control Technology Currently Available (BPT). For most effluent quidelines with toxic and non-conventional pollutants, BAT represents the most stringent quideline and the one that is used in most permitting applications. However, in refinery guidelines there are cases where BPT or BCT is sometimes more stringent than BAT and these limitations are applied to the parameter of concern. BCT is used for conventional pollutants. The final calculations are screened against limitations established in a previous permit by BPJ. These limitations are now BAT for that facility and must be screened against the calculated effluent quideline limitations with the most stringent applying in order to address anti-backsliding concerns (40 CFR 122.44.1, LAC 33.IX.2707.L). The term "Daily Average" as it is used in this documentation and in the spreadsheet is assumed to be equivalent to "Monthly Average". The spreadsheet is set up in a table and column/section format. Each table represents a general category for data input or calculation points. Each reference column or section is marked by a set of parentheses enclosing a number and asterisk, for example (*1) or (*8). These columns or sections represent inputs, existing data sets, calculation points, or results for determining technology based limits for an effluent of concern.

Introductory Notes to Petroleum Refining Effluent Limitations Calculations:

Regulatory Basis

Unless otherwise stated, the technology-based permit effluent limitations presented in this appendix are calculated using national effluent limitations and standards listed at 40 CFR Part 419 - Petroleum Refining Point Source Category. Technical data supporting the national effluent limitations and standards for the Petroleum Refining Point Source Category will be found at the following development documents:

1974 Development Document

Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Petroleum Refining Point Source Category, USEPA, EPA-44011-74-014a, April 1974

1982 Development Document

Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Petroleum Refining Point Source Category, USEPA, EPA 440/1-82/014, October 1982

Example Calculations

Example calculations for deriving petroleum refining permit effluent limitations will be found at:

> 40 CFk Part 419.42(a)(3) Part 419.43(c)(2)

Development Documents

1974 Development Document (Section IX, Pages 148-151) 1982 Development Document (Section I, Pages 1-14)

1985 Guidance

Guide for the Application of Effluent Limitations Guidelines for the Petroleum Refining Industry, USEPA, Industrial Technology Division, June

Discussion of EPA Refining Processes Used in Calculations

Crude Processes Atmospheric Crude Distillation Crude Desalting Vacuum Crude Distillation	EPA Process Number 1 2 3
Cracking and Coking Processes	
Visbreaking	4
Thermal Cracking	5
Fluid Catalytic Cracking	6
Moving Bed Catalytic Cracking	7
Hydrocracking	10
Delayed Coking	15
Fluid Coking	16
Hydrotreating*	54
Lube Processes	
Hydrofining, Hydrofinishing, Lube Hydrofinishing	21
White Oil Manufacture	22
Propane: Dewaxing, Deasphalting,	23
Fractioning, Derinsing	
Duo Sol, Solvent Treating, Solvent Extraction	24
Duotreating, Solvent Dewaxing,	
Solvent Deasphalt	
Lube Vacuum Tower, Oil Fractionation, Batch	25
Still (Naphtha Strip), Bright Stock	
Treating	
Centrifuge & Chilling	26
Dewaxing: MEK, Ketone, MEK-Toluene	27
Deoiling (Wax)	28
Naphthenic Lube Production	29
SO2 Extraction	30

Wax Pressing	₹ 4
Wax Plant (with Neutral Separation)	35
Furfural Extracting	36
Clay Contacting - Percolation	37
Wax Sweating	38
Acid Treating	39
Phenol Extraction	4 0
Asphalt Processes	
Asphalt Production	18
200 Deg. F Softening Point Unfluxed Asphalt*	32
Asphalt Oxidizing	43
Asphalt Emulsifying	89
Reforming and Alkylation Processes	
H2SO4 Alkylation*	8
Catalytic Reforming*	12

* These processes are not included in the refinery process configuration factor calculations.

EPA Process Numbers will be found at Appendix A to 40 CFR 419. They can be cross-referenced in Table III-7, pages 49-54 of the 1982 Development Document.

Refining processes used in Table 2 (except as noted) lead to the calculation of all BPT/BCT permit effluent limitations for ammonia (as N), sulfide (as S), and COD only. The Table 2 refining processes are listed at Section IX, Table 51, page 151, of the 1974 Development Document. A detailed discussion of the refining processes used in the refinery process configuration factor (Table 2) is found in the "1974" Flow Model at Section IV, pages 55-62, of the 1974 Development Document and at Section IV, pages 63-65 of the 1982 Development Document. Also see "Process Groupings Included in 1974 Flow Model" at page 19 of the 1985 Guidance. Because certain petroleum refining processes [Hydrotreating; 200 Deg. F Softening Point Unfluxed Asphalt; H2SO4 Alkylation; and Catalytic Reforming) were not included in the 1974 flow model, they are not included as a process in the refinery process configuration factor calculations (Table 2). In 1976, the U.S. Court of Appeals upheld the 1974 BPT and NSPS regulations [see discussion at Section IV, pages 61-62, of the 1982 Development Document]. Refining processes not included in the 1974 Flow Model [the basis for all BPT/BCT permit effluent limitations and BAT permit effluent limitations for ammonia (as N), sulfide (as S), and COD only) are not considered in the refinery process configuration factor calculations (Table 2).

Refining processes and categories used in Tables 2 and 5 lead to the calculation of amended BAT permit effluent limitations for total recoverable phenolics, chromium (total), and chromium (6+). These refining processes are listed at Appendix A to 40 CFR Part 419. A detailed discussion of the refining processes used in BAT permit effluent limit calculations will be found in the discussion of the Refined Flow Model at Section IV, pages 67-68,

of the 1962 Development Document. Also see "Process Groupings Included in 1979 Flow Model" at page 20 of the 1985 Guidance. Refining processes not included in the 1979 Flow Model [the basis for Appendix A to 40 CFR Part 419] are not considered in BAT permit effluent limitations for total recoverable phenolics, chromium (total), and chromium (6+).

Organizations or individuals desiring the inclusion of other refining processes in the previously mentioned calculations should petition the U.S. Environmental Protection Agency under the Administrative Procedures Act, 5-U.S.C. Sec. 553(e), which authorizes interested parties to petition the issuance, amendment, or repeal of a rule.

Table 1

Table 1 is a data input area.

(*1) Facility Information

Generalized input information for the facility:

Permittee- Permittee name.

Permit Number- LPDES permit number.

<u>Concentration flow, (MGD)</u>- If concentration limits are desired, then a flow for determining concentration limits is placed here.

Anti-backsliding. GL vs Old. 0=n, 1=y, 2=GL+Old: This switch establishes how previously established Best Professional Judgement (BPJ) permit limits will be screened. "0" indicates that no screening will occur. "1" indicates that the BPJ-Technology permit limits will be screened. "2" indicates that the guideline values will be added to the previously established BPJ-Technology limitations. This is only used when significant increases in production have occurred since the last permit was issued. Guideline values are calculated only on the basis of the increase.

Outfall number: Generally written as an abbreviation, e.g., "Out. 001".

40 CFR 419 Subpart. (A. B. C. D. or E): The subpart that the spreadsheet uses is specified by putting the designated subpart letter in the indicated cell. Input can be in either lower case or upper case.

<u>Refinery type</u>: The spreadsheet automatically specifies the refinery type, Topping, Cracking, Petrochemical, Lube, or Integrated based on the subpart specified.

(*2) Throughput Rates

Feedstock (Crude Oil and NGL) Rate to Topping Unit(s): As defined in the guidelines, the term "feedstock" shall mean the crude Oil and natural gas liquids (NGL) fed to the topping unit(s).

<u>Process Unit Rates</u>: These values are input in Table 2 on the row indicating the specific process under the column labeled, "Unit Process Rate K bbl/day."

(*3) Flow Rates

<u>Ballast Flow, K gal/day</u>: As defined in the guidelines, "ballast" shall mean the flow of waters, from a ship, that is treated along with refinery wastewaters in the main treatment system. Units as specified.

Stormwater Calculations: The refinery effluent guidelines give an allowance for contaminated runoff. This is calculated using an areal estimate of the process area in either square feet or acres and an annual rainfall estimate in inches.

<u>Process area. sq. ft. (or acres)</u>: The process area size is specified in the cell with the appropriate units.

Annual rainfall inches: Estimate of annual rainfall as specified.

Contaminated stormwater to Treatment System: Input here is optional. This is the calculated value utilizing the process area size and amount of rainfall specified above or a precalculated value (from DMR's or other sources) submitted by the applicant. If you are utilizing a precalculated value, then inputs in the Process area, sq. ft. (or acres):or Annual rainfall, inches:fields are not necessary.

- (*4) TOC:BOD5. TOC to BOD5 Ratio. A TOC to BOD5 ratio of 2.2 to 1 is established on a BPJ basis consistent with EPA Region 6 and the refinery effluent guidelines. COD:BOD5 1=y default G/L calculated values for san. This field is used and will appear only when a sanitary allocation to process wastewaters is being calculated. A "1" placed in this field will take the default COD:BOD5 ratio calculated from the total loadings of COD and BOD5 from the refinery guidelines.
- (+5) <u>Discharge fraction</u>, <u>default =1</u>: If the process wastewater is not discharged at 100% through the regulated outfall, then the fraction that is discharged through the regulated outfall is placed here. Examples where a facility may split a process flow include, deep well injection, POTW's, other facilities, etc. This is in accordance with 40 CFR 122.50/LAC 33:IX.2717.
- (*6) <u>Sanitary Flow. MGD:</u> On rare occasions sanitary wastewaters are given a flow allocation in MGD. This allocation will be given only to facilities that currently have significant sanitary wastewaters included in their process wastewater BOD5 and TSS allocations. "Significant", in

this case, is defined when the sanitary wastewaters contribute 5% or more of the total BOD5 or TSS loading of the wastewater treatment system. This allocation will not be given to facilities that have not received this allocation before or facilities adding additional sanitary wastewaters to their process wastewater treatment systems in accordance with anti-backsliding regulations (40 CFR 122.44.1, LAC 33.IX.2707.L). This section will not appear if sanitary wastewater is not granted an allocation.

(*6), (*7) Anti-backsliding Information:

The previous permit limitations established by BPJ (now BAT) are put under the appropriate column (* A) "Avg" for daily maximum 30-day average, and (* B) "Max" for daily maximum on the row with the specified parameter. Column (* C) utilizes the same switches described in section (* 1) under the discussion on anti-backsliding. The only difference here is that the switch can be specified on a parameter specific basis. If sanitary wastewater is granted an allocation, this will become section (* 7), otherwise it will remain section (* 6).

(*7), (*8) Conversion Utilities:

This section contains useful conversions for calculations throughout the spreadsheet. A section is dedicated to calculating COD:BODS ratios or inputting COD concentrations in mg/L for the exclusive purpose of calculating COD loadings attributed to sanitary wastewater. As stated above under section (*4), default COD:BODS ratios are calculated by dividing total guideline COD loading by total guideline BODS loading. The use of a more stringent ratio or concentration in a previously issued permit would preclude using the default calculation procedure. All fields containing information about COD ratios or concentrations will not appear if sanitary wastewaters are not granted an allocation for BODS. If sanitary wastewater is granted an allocation, this will become section (*8), otherwise it will remain section (*7).

Table 2

Table 2 calculates the total refinery process configuration factor by summing all contributing unit process configuration factors (except processes noted).

- (*1) Specifies refinery processes under 5 different categories, crude processes, cracking and coking processes, lube processes, asphalt processes, and reforming and alkylation processes. Footnoted processes are not included in the total refinery process configuration factor.
- (*2) EPA process number. From Table III-7, Pages 49-54, Final Development Document for Effluent Limitations Guidelines and Standards for the Petroleum Refining Point Source Category, EPA 440/1-82/014, October, 1982.

- (73) Unit Process Rate, K bhl/day. Process rate is placed on the row with the specified process. Unit process rates are summed for each process group for use in determining BAT limitations for Total Chromium, Chromium (6+), and Total Recoverable Phenolics in Table 6.
- (*4) Total Feedstock Rate, K bbl/day. This column contains the value specified in section (*2) of Table 1.
- (*5) Unit Process Rate to Feedstock Rate Ratio. The unit process rate is divided by the feedstock rate specified in column (*4).
- (*6) Weighting factor. The spreadsheet uses the weighting factors specified at 40 CFR 419.42(b)(3), Subpart D.
- (*7) Unit process configuration factor. The product in this column is the result of multiplying the "Unit Process Rate to Feedstock Rate Ratio" in column (*5) times the weighting factor specified in column (*6). These values are summed to obtain the total refinery process configuration factor.

Tables 3 and 4

Tables 3 and 4 calculate the process and size factors respectively. The input for determining the appropriate process factor is the total refinery process configuration factor. The input for determining the appropriate size factor is the feedstock in K bbl/day. The multiplier used in determining mass loadings for certain parameters specified in Table 6 is determined by multiplying the feedstock times the process factor times the size factor.

Table 5

Table 5 summarizes the process group feedstock rates (crude, cracking and coking, lube, asphalt, reforming and alkylation) specified in Table 2 for use in calculating BAT limitations for Total Recoverable Phenolics (specified as Total Phenolics), Total Chromium, and Chromium (6+) in Table 6.

Table 6

Table 6 is where mass loadings are calculated for each parameter under each applicable wastewater type; process, ballast, stormwater (contaminated) and sanitary wastewaters, when applicable. For Total Recoverable Phenolics (specified as Total Phenolics), Total Chromium, and Chromium (6+), mass loadings are calculated twice under the process wastewater section, once with BPT factors and once with BAT factors with the most stringent applying.

- (*1) Parameter.
- (*2) References. 40 CFR reference applicable to the specified factors and subparts in columns (*4) and (*5).

- (%) Treatmit. Tech. Applicable treatment technology, BPT, BCT, or BPT, for the parameter and factors specified. BPJ is applied to sanitary wastewaters, when sanitary wastewater is granted an allocation.
- (*4) Factor, Avg. Daily average (daily maximum 30-day average) factors specified in the guidelines. Sanitary wastewater would be granted a flow based allocation of 30 mg/L for BOD; and TSS, when applicable.
- (*5) Factor, Max. Daily maximum factors specified in the guidelines. Sanitary wastewater would be granted a flow based allocation of 45 mg/L for BOD, and TSS, when applicable.
- (*6) Multiplier/Table 2 Group Feedstock Rate, K bbl/day/Flow K gal/day. For the process wastewater, this column contains the multiplier calculated under Tables 3 and 4 or the applicable group feedstock rate from Table 2 in 1000 barrels per day (K bbl/day). For ballast, sanitary (when applicable), and stormwater, flow in 1000 gallons per day (except sanitary in MGD) from the data input table, Table 1.
- (*7) Discharge fraction through outfall. This column contains the factor calculated in section (*5) of Table 1.
- (*8) Daily average (daily maximum 30-day average) loadings in 1bs per day for the specified parameter under the specified subpart.
- (*9) Daily maximum loadings in lbs per day for the specified parameter under the specified subpart.

Table 7

Table 7 is a data summary table totaling the allocations from process wastewater, ballast water, contaminated stormwater, and sanitary wastewater (when applicable). The total values represent the refinery effluent guideline limitations.

- (*1) Process wastewater daily average (daily maximum 30-day average) loadings in lbs per day for the specified parameter under the specified subpart.
- (*2) Process wastewater daily maximum loadings in lbs per day for the specified parameter under the specified subpart.
- (*3) Ballast water daily average (daily maximum 30-day average) loadings in lbs per day for the specified parameter under the specified subpart.
- (*4) Ballast water daily maximum loadings in 1bs per day for the specified parameter under the specified subpart.
- (*5) Contaminated stormwater daily average (daily maximum 30-day average) loadings in lbs per day for the specified parameter under the specified subpart.

Appendix A-2 LA0039390, AI No. 2366 Page 9

- (*6) Contaminated stormwater daily maximum loadings in 1bs per day for the specified parameter under the specified subpart.
- (*7) Sanitary wastewater daily average (daily maximum 30-day average) loadings in lbs per day for the specified parameter. This column will not appear if sanitary wastewater is not granted an allocation.
- (*8) Sanitary wastewater daily maximum loadings in lbs per day for the specified parameter. This column will not appear if sanitary wastewater is not granted an allocation.
- (*7, *9) Total daily average (daily maximum 30-day average) loadings in lbs
 per day for the specified parameter under the specified subpart.
 If sanitary wastewater is granted an allocation, this will become
 column (*9), otherwise it will remain column (*7).
- (*8, *10) Total daily maximum loadings in lbs per day for the specified parameter under the specified subpart. If sanitary wastewater is granted an allocation, this will become column (*10), otherwise it will remain column (*7).

Table 8

Table 8 is utilized when anti-backsliding (40 CFR 122.44.1, LAC 33.IX.2707.L) concerns are present. The effluent limitation guideline values are screened against BPJ-Technology values from the previous permit with the most stringent applying.

- (*1) Parameter.
- (*2) Daily average effluent limitation guideline in lbs/day from column (*7)
 in Table 7.
- (*3) Daily maximum effluent limitation guideline in lbs/day from column (*8) Table 7.
- (*4) Daily Average Tech Old in 1bs/day. This column is utilized when an anti-backsliding concern (40 CFR 122.44.1, LAC 33.IX.2707.L) is present. This would be indicated by substantially higher limits (~30% or greater) calculated under guidelines than those previously established in the old permit on a BPJ basis. If the previously issued permit (as applicable) contains limits for the parameter of concern and an anti-backsliding concern is present, the limits from the previously issued permit are placed in this column in lbs/day.
- (*5) Daily Maximum Tech Old in lbs/day. Similar to (*7).
- (*6) Antiback, 0=no scr., 1=OldvsGL, 2=Old+GL. Anti-Backsliding screening switch. The default is set not to screen. This can be changed under

Appendix A-2 LA0039390, AI No. 2366 Page 10

section (*1) in the data input page. If a screen is conducted, a "1" will appear in this column. The more stringent permit limits will appear in columns (*7) and (*8). If the screen indicates that the previously issued permit limit utilizing BPJ-Technology is more stringent and an increase in production has occurred, the technology based limits can be recalculated using guidelines for the increase only. This will be indicated by a "2" in this column. The recalculated guideline limitations in columns (*2) and (*3) are subsequently added to the values in columns (*4) and (*5) yielding technology-based effluent limitations in columns (*7) and (*8). The values in this column can be changed on a row-by-row basis for site-specific screening situations.

- (*7) Daily Average technology based effluent limit in lbs/day. If no anti-backsliding screening is conducted then the value in this column will be equal to the value in column (*2). When anti-backsliding screening is used, see discussion for column (*6).
- (*8) Daily Maximum technology based effluent limit in lbs/day. If no antibacksliding screening is conducted then the value in this column will be equal to the value in column (*3). When anti-backsliding screening is used, see discussion for column (*6).
- (*9) Daily Average technology based effluent limit in mg/L. A concentration limit can be calculated using the specified concentration flow from section (*1) under the data input table and the mass limitation calculated under column (*7). The formula is as follows:

effluent limit, lbs/day
flow, MGD * 8.34

(*10) Daily Maximum technology based effluent limit in mg/L. Similar to column (*9), a concentration limit can be calculated using the specified concentration flow from section (*1) under the data input table and the mass limitation calculated under column (*8). The formula is as follows:

effluent limit, lbs/day flow, MGD * 8.34

vgsmodn.wk4 Date: 03/14 Appendix E-1

Developer: Bruce Fielding Time: 08:10 AM

Software: Lotus 4.0

LA0039290, A12366

Revision date: 02/14/05

Input variables: Receiving Water Character	مٰدبر∈س معادم	Screen for Placid Refining Com	ipany LLC	
•				
Receiving water tharacter	::	Dilution:	Toxicity Dilution	Series.
	150105:	Z1D Fs = 0.033233	Biomonitoring dilu	
Bassinias Natas Name-	Micciccioni Div	er, Segment 070301	Dilution Series Fa	
=	• •	MZ Fs = 0.333333	princion screen	0.75
Critical flow (Qr) cfs=	141955			Percent Effluent
Harm, mean/avg tidal cfs=		Critical Qr (MGD)=91745.52 Harm. Mean (MGD)= 237029.2	Dilution No. 1	0.037%
Drinking Water=1 HHNPCR=2	1	2ID Dilution = 0.000276	Dilution No. 2	0.0276%
Marine, 1=y, 0=n	3.F.A		Dilution No. 3	0.0207%
Rec. Water Hardness=	154		Dilution No. 4	0.0155%
Rec. Water TSS=	50.8	HHnc Dilution= 0.000009 HHc Dilution= 0.000004	Dilution No. 5	0.0135%
Fisch/Specific=1,Stream=0		-	DITUCION NO. 3	0.0116\$
Diffuser Ratio=		2ID Upstream = 3623.441	Darrition Coefficien	ts: Dissolved>Total
		M2 Upstream = 36234.41	Partition Coefficien	cs; 015501vea>10ca1
Effluent Characteristics:		MZhhnc Upstream= 108703.2	MDWN C	PU
	Placid Refining		METALS	FW
	LA0039390, A123			2.386195
Facility flow (Qef),MGD=	0.844	MZhhc Upstream= 280840.3		3.400478
		ZID Hardness=		5.423334
Outfall Number -	001	M2 Hardness-	Chromium VI	1
Eff. data, 2≃lbs/day	2	ZID TSS=	•••	3.887739
MQL, 2=1bs/day	1	MZ TSS=		7.142296
Effluent Hardness=	N/A	Multipliers:	-	2.673313
Effluent TSS=	N/A	WLAa> LTAa 0.32		3.652879
WQBL ind. 0=y, 1=n	_	WLAC> LTAC 0.53	Total Zinc	5.061338
Acute/Chr. ratio 0=n, 1=y		LTA a.c>WQBL avg 1.31 LTA a.c>WQBL max 3.11	Aquatic Life, Diss	havio
Aquatic,acute only1=y,0=n		LTA a,c>WQBL max 3.11 LTA h> WQBL max 2.38	Metal Criteria, ug	
Page Numbering/Labeling		WOBL-limit/report 2.13	METALS	ACUTE CHRONIC
	Appendix B-1	WLA Fraction 1	Arsenic	339.8 150
Page Numbers 1*y, 0=n	Appendix E-1	WQBL Fraction 1		50.77136 1.418404
Input Page # 1=y, 0=n	1	"App / Ibee 10."		781.5281 253.5196
input Page # 14y, 0-11	•	Conversions:	Chromium VI	15.712 10.582
Fischer/Site Specific inp	uts:	ug/L>lbs/day Qef0.007039	Copper	27.67681 17.76542
Pipe=1, Canal=2, Specific=3		ug/L>lbs/day Qeo 0		102.9974 4.013662
Pipe width, feet		ug/L>lbs/day Or 1183.905	Mercury	1.734 0.012
ZID plume dist., feet		1bs/day>ug/L Qeo142.0664	Nickel	2039.5 226.5028
MZ plume dist., feet		lbs/day>ug/L Qef142.0664	Zinc	165.0031 150.6729
HHnc plume dist., feet		diss>tot 1=y0=n 1		
HHc plume dist., feet		Cu diss->tot1=y0=n 1	Site Specific Mult	iplier Values:
		cfs>MGD 0.6463	CV =	~~.
	utions.)) =	
Fischer/site specific dil	ucions:		177.3-	
Fischer/site specific dil- F/specific ZID Dilution =		Receiving Stream:	WLAa> LTAa	~ = *
F/specific ZID Dilution =		Receiving Stream: Default Hardness= 25	WLAC> LTAC	
·	* = =	_		
F/specific ZID Dilution = F/specific M2 Dilution =	* = =	Default Hardness= 25	WLAC> LTAC	

Appendix B

Appendix B-1 Placid Refining Company LLC LA0039390, Al2366

.*1:	1*51	+3) (+4	(*5)	(*6)	(+7) (*8	(*9) (*10	(*11)
Toxic	CuEfflue	nt Effluent	. WOP	Effluent	95th %	Nu	merical C	riteria	нн
Parameters	lnstream /Tec	h /Tech		1=No 95%	estimate	e Acut	e Chroni	с ННДЖ	Carcinogen
	Conc. (A	vg) (Max	()	0=95 %	Non-Tech	FW	FW		Indicator
	ug/L lbs/d	ay lbs/day	v ug/L		lbs/day	υ <u>σ</u> /:	և ug/.	L ug/	יכיי
NONCONVENTIONAL									
Total Phenols (4AAP)	1.52	24 3.70814	5	1		700	350	5	
3-Chlorophenol			10					0.1	
4-Chlorophenol			3.0			383	192	0.1	
2,3-Dichlorophenol			10					0.04	
2,5-Dichlorophenol			10					0.5	
2,6-Dichlorophenol			10					0.2	
3,4-Dichlorophenol			10					0.3	
2,4-Dichlorophenocy-									
acetic acid (2,4-D)								100	
2-12,4,5-Trichlorophen-									
oxy) propionic acid									
(2,4,5-TP, Silvex)								10	
METALS AND CYANIDE									
Total Arsenic			10			610.6292	357.9293	119.3098	
Total Cadmium	0.0	14	1	0	0.02982	172.6469	4.823252	34.00478	
Chromium III			10			4238.488	1374.922	271.1667	
Chromium VI	0.157	38 0.35587	10	1		15.712	10.582	50	¢
Total Copper			10			107.6002	69.06732	3887.739	
Total Lead			5			735.6381	28.66676	357.1148	
Total Mercury	0.0	02	0.2	0	0.00426	4.635524	0.03208	5.346625	
Total Nickel			40			7450.047	827.3874		
Total Zinc			20			835.1365	762.6063	25306.69	
Total Cyanide	0.	18	20	0	0.3834	45.9	5.2	663.8	
DIOXIN									
2,3,7,8 TCDD; dioxin			1.0E-005					7.1E-007	С
2,5,1,0 (CDD, G10A1).			1.00 000						-
VOLATILE COMPOUNDS									
Вепгепе			10			2249	1125	1.1	С
Bromoform			10			2930	1465	3.9	С
Bromodichloromethane			10				-	0.2	С
Carbon Tetrachloride			10			2730	1365	0.22	С
Chloroform			10			2890	1445	5.3	С
Dibromochloromethane			10					0.39	С
1,2-Dichloroethane			10			11800	5900	0.36	С
1,1-Dichloroethylene			10			1160	580	0.05	С
1,3-Dichloropropylene			10			606	303	9.86	
Ethylbenzene	•		10			3200	1600	2390	
Methyl Chloride			50			55000	27500		
Methylene Chloride			20			19300	9650	4.4	С
1,1,2,2-Tetrachloro-									
ethane			10			932	466	0.16	С

Appendix 8-1 Placid Refining Company LLC LA0039390, Al2366

	(*12)	(*13) {*14) (*15) (*16) (*17)	(*18) (*19)	(*20)	(+21)	(*22)	(*23)
Toxic	WLAa						n Limitin			,	•	Note
Parameters	Acute				e Chronia		A, C, HH	Avo	= "	-	=	WOBL?
ra. ameter s	ACULE	ciiioiii		ACCC	C C11_0111		11, 01	001	001	001	001	"OBL:
	ug/l	ug/	L ug/	L ug/	L ug/l	L ug/I	և ug/:					
NONCONVENTIONAL	-5, -	3,		5,	,	J.	2.		-		,,,	
Total Phenols (4AAP)	2537108	1.3E+007	543521.1	811874.7	6721668	543521.1	543521.1	543521.1	1293580	3825.823	9105.459	no
3-Chlorophenol			10870.42						25871.6			no
4-Chlorophenol	1388161	6957198	10870.42	444211.4	3687315	10870.42	10870.42	10870.42	25871.6	76.51646	182.1092	ло
2,3-Dichlorophenol			4348.169			4348.169	4348.169	4348.169	10348.64	30.60659	72.84367	no
2.5-Dichlorophenol			54352.11			54352.11	54352.11	54352.11	129358	382.5823	910.5459	no
2,6-Dichlorophenol			21740.84			21740.84	21740.84	21740.84	51743.21	153.0329	364.2184	no
3,4-Dichlorophenol			32611.27			32611.27	32611.27	32611.27	77614.81	229.5494	546.3276	no
2,4-Dichlorophenocy-												
acetic acid (2,4-D)			1.1E+007			1.1E+007	1.1E+007	1.1E+007	2.65+007	76516.46	182109.2	no
2- (2,4,5-Trichlorophen-												
oxy) propionic acid												
(2,4,5-TP, Silvex)			1087042			1087042	1087042	1087042	2587160	7651.646	18210.92	no
METALS AND CYANIDE												
Total Arsenic									2924696			no
Total Cadmium	625748.3								288077.5			no
Chromium III	1.5E+007								1.5E+007			no
Chromium VI									56673.86			no
Total Copper			4.2E+008		1326422		124797		388118.6			no
Total Lead									1712175			no
Total Mercury Total Nickel		3E+007		8640721		581200.7			1916.022 2.7E+007			no
Total Zinc	2.7E+007								3012374			no
Total Cyanide									165563.3		-	по
DIOXIN												
2,3,7,8 TCDD; dioxin			0.199397			0.199397	0.199397	0.199397	0.474566	0.001404	0.00334	no
VOLATILE COMPOUNDS												
Benzene	8151367	4.1E+007	308925.5	2608437	2.2E+007	308925.5	308925.5	308925.5	735242.6	2174.514	5175.343	no
Bromoform	1.1E+007	5.3E+007	1095281	3398276					2606769			no
Bromodichloromethane	-		56168.26						133680.5			no
Carbon Tetrachloride									147048.5		- 	ΠD
Chloroform									3542532			no
Dibromochloromethane			109528.1						260676.9			no
1,2-Dichloroethane									240624.8			по
1,1-Dichloroethylene									33420.12 2185868			no
1,3-Dichloropropylene					-				1.2E+007			no
Ethylbenzene Methyl Chloride	1.2E+007 2E+008	1E+007		5/1142/ 6.4E+0D7			6.4E+007			588211.4		no
Methylene Chloride									2940970			no no
1,1,2,2-Tetrachloro-	. 5-007		12,27,02	2.22.007				,		0 . 0 . 0	/	.10
ethane	3377979	1.7E+007	44934.61	1080953	8949421	44934.61	44934.61	44934.61	106944.4	316.2929	752.7772	no
												- 1-2

Appendix E-1 Placid Refining Company LLC LA0039390, A12366

1+11	(*2)	(+3)	(*4)	(*5)	(*6	(*7)	(*8)	(*9)	(*10)	(*11)
Toxic	Cu	Eff]uent	Effluent	MQLEff	luent	95th %	Nume	erical Cr	iteria	hn
Parameters	Instream	/Tech	/Tech	1 = N	o 95%	estimate	Acute	Chronic	менн	Carcinogen
	Cong.	(Avg)	(Max)	0=9	5 %	Non-Tech	FW	FW		Indicator
	ug/L	lbs/day	lbs/day	ug/i		lbs/day	ug/L	ug/I	υg/L	"C"
VOLATILE COMPOUNDS (con	t'd)									
Tetrachloroethylene				10			1290	645	0.65	С
Toluene				10			1270	635	6100	
1,1,1-Trichloroethane				· 10			5280	2640	200	
1,1,2-Trichloroethane				10			1800	900	0.56	C
Trichloroethylene				10			3900	1950	2.8	C
Vinyl Chloride				10					1.9	С
ACID COMPOUNDS										
2-Chlorophenol				10			258	129	0.1	
2,4-Dichlorophenol				10			202	101	0.3	
BASE NEUTRAL COMPOUNDS										
Benzidine				50			250	125	0.00008	С
Hexachlorobenzene				10					0.00025	С
Hexachlorabutadiene				10			5.1	1.02	0.09	С
PESTICIDES										
Aldrin				0.05			3		0.00004	С
Hexachlorocyclohexane										
(gamma BHC, Lindane)				0.05			5.3	0.21	0.11	С
Chlordane				0.2			2.4	0.0043	0.00019	С
4,4'-DDT				0.1			1.1	0.001	0.00019	С
4 , 4 ' - DDE				0.1			52.5	10.5	0.00019	С
4 , 4 ' - DDD				0.1			0.03	0.006	0.00027	С
Dieldrin				1.0			0.2374	0.0557	0.00005	C
Endosulfan				0.1			0.22	0.056	0.47	
Endrin				0.1			0.0864	0.0375	0.26	
Heptachlor				0.05			0.52	0.0038	0.00007	С
Toxaphene				5			0.73	0.0002	0.00024	С
Other Parameters:										
Fecal Col.(col/100ml)										
Chlorine							19	11		
Ammonia		137.28	302.016		1			4000		
Chlorides										
Sulfates										

Sulfates

TDS

Appendix B-1 Placid Refining Company LLC LA0039390, A12366

7+3 Y	(*12)	(*13)) (*14)) (*15)	(*16)	(-17)	(*18)	(+19)	(+20)	(*21	(*22)	(*23)
Toxic	WLAa						n Limiting	g WQB1	. WQB:			Neea
Parameters	Acute					- нном	A,C,HH	ÀVQ	Ma)	: Av		WOBL?
, of mindeed 5	7.6420				•			001	001	001	001	
	υg/I	. ug/i	L 119/1	L 139/1	L ug/1	L ug/I	ug/1 يا	L ug/1	ug/I	lbs/da		
	~		_	_							•	
Tetrachloroethylene	4675528	2.3E+007	182546.9	1496169	1.2E+007	182546.9	182546.9	182546.9	434461.5	1284.94	3058.157	no
Toluene	4603040	2.3E+007	6.6E+008	1472973	1.2E+007	6.6E+008	1472973	1929594	4580945	13582.34	32245.09	no
1,1,1-Trichloroethane	1.9E+007	9.6E+007	2.2E+007	6123855	S.IE+007	2.2£+007	6123855	8022250	1.9E+007	56468.3	134058.3	υQ
1,1,2-Trichloroethane	6523993	3.3E+007	157271.1	2087678	1.7E+007	157271.1	157271.1	157271.1	374305.3	1107.025	2634.72	on
Trichloroethylene	1.4E+007	7.1E+007	786355.7	4523302	3.7E+007	786355.7	786355.7	786355.7	1871527	5535.126	13173.6	no
Vinyl Chloride			533598.5	- 		533598.5	533598.5	533598.5	1269964	3755.979	8939.229	no
						•						
ACID COMPOUNDS												
2-Chlorophenol	935105.7	4674367	10870.42	299233.8	2477415	10870.42	10870.42	10870.42	25671.6	76.51646	162.1092	no
2.4-Dichlorophenol	732137	3659776	32611.27	234283.8	1939681	32611.27	32611.27	32611.27	77614.83	229.5494	546.3276	nο
BASE NEUTRAL COMPOUNDS	1											
Benzidine	906110.2	4529426	22.46731	289955.2				22.46731				no
Hexachlorobenzene			70.21033					70.21033				no
Héxachlorabutadiene	18484.65	36960.11	25275.72	5915.087	19588.86	25275.72	5915.087	7748.764	18395.92	54.54324	129.4882	no
Phoen of the												
PESTICIDES Aldrin	10873.32		11.23365	2420 463		11 23365	11 23365	11.23365	26 73609	0 076073	0 100104	
Héxachlorocyclohexane	10673.32		11.23.00	3417.403		11.22203	11.25505	11.23303	205005	0,013073	0.100134	no
(qamma BHC, Lindane)	10708 64	2600 425	10002 55	6147 051	4033 001	30892 55	4033 001	5283.231	12542 63	37 18845	88 28700	no
Chlordane								53.35985				no
4 . 4 ' - DDT								25.15824				no
4 , 4 ' - DDE			53.35985					53.35985				no
4 , 4 ' - DDD								45.58097				no
Dieldrin								14.04207				no
Endosulfan	797.3769	2029.183	51090.98	255.1606	1075.467	51090.98	255.1606	334.2604	793.5495	2.352846	5.585763	no
Endrin	313.1517	1358.828	28263.1	100.2085	720.1787	28263.1	100.2085	131.2732	311.6485	0.924027	2.193682	no
Heptachlor	1884.709	137.6945	19.65889	603.1069	72.97811	19.65889	19.65889	19.65889	46.78816	0.138378	0.32934	no
Toxaphene	2645.842	7.247081	67.40192	846.6693	3.840953	67.40192	3.840953	5.031649	11.94536	0.035418	0.084083	no
Other Parameters:												
Fecal Col.(col/100ml)												no
Chlorine	68864.37			-	211252.4			28867.94				no
Ammonia		1.4E+008			7.7E+007		7.7E+007	1E+008	2.4E+008	708351.5	1681659	vo
Chlorides												no
Sulfates				* = ∸		- 						no
TDS										+		no
						.						
												no
												.10

APPENDIX B-2 LA0039390, AI No. 2366

Documentation and Explanation of Water Quality Screen and Associated Lotus Spreadsheet

Each reference column is marked by a set of parentheses enclosing a number and asterisk, for example (*1) or (*19). These columns represent inputs, existing data sets, calculation points, and results for determining Water Quality Based Limits for an effluent of concern. The following represents a summary of information used in calculating the water quality screen:

Receiving Water Characteristics:

Receiving Water: Mississippi River Critical Flow, Qrc (cfs): 141,955 Harmonic Mean Flow, Qrh (cfs): 366,748

Segment No.: 070301

Receiving Stream Hardness (mg/L): 154.0

Receiving Stream TSS (mg/L): 50.8

MZ Stream Factor, Fs: 1/3 Plume distance, Pf: N/A

Effluent Characteristics:

Company: Placid Refining Company LLC

Facility flow, Qe (MGD): 0.844

Effluent Hardness: N/A

Effluent TSS: N/A

Pipe/canal width, Pw: N/A Permit Number: LA0039390

Variable Definition:

Qrc, critical flow of receiving stream, cfs

Qrh, harmonic mean flow of the receiving stream, cfs

Pf = Allowable plume distance in feet, specified in LAC 33.IX.1115.D

Pw = Pipe width or canal width in feet

Qe, total facility flow , MGD

Fs, stream factor from LAC.IX.33.11 (1 for harmonic mean flow)

Cu, ambient concentration, ug/L

Cr, numerical criteria from LAC.IX.1113, Table 1

WLA, wasteload allocation

LTA, long term average calculations

WQBL, effluent water quality based limit

ZID, Zone of Initial Dilution in % effluent

MZ, Mixing Zone in % effluent

Formulas used in aquatic life water quality screen (dilution type WLA):

Streams:

Dilution Factor = $\frac{Oe}{(Orc \times 0.6463 \times Fs + Qe)}$

Appendix B-2 LA0039390, Al No. 2366 Page 2

WLA a, c, b =
$$\frac{Cr}{Dilution Factor}$$
 - $\frac{(Fs \times Orc \times 0.5463 \times Cu)}{Qe}$

Static water bodies (in the absence of a site specific dilution):

Discharge from a pipe:

Discharge from a canal:

Critical

Dilution = (2.8) Pw $\pi^{3/2}$

Critical
Dilution = $(2.38) (Pw^{1/2})$ $(Pf)^{1/2}$

WLA = $\frac{(Cr_2Cu) Pf}{(2.8) Pw n^{1/2}}$

WLA = $\frac{(Cr-Cu) pf^{1/2}}{2.38 pw^{1/2}}$

Formulas used in human health water quality screen, human health non-carcinogens (dilution type WLA):

Streams:

Dilution Factor =
$$Qe$$
 (Qrc x 0.6463 + Qe)

WLA a,c,h =
$$\frac{Cr}{Dilution Factor}$$
 - $\frac{(Orc \times 0.6463 \times Cu)}{Qe}$

Formulas used in human health water quality screen, human health carcinogens (dilution type WLA):

Dilution Factor =
$$\frac{Qe}{(Qrh \times 0.6463 + Qe)}$$

WLA a,c,h =
$$\frac{Cr}{Dilution Factor}$$
 - $\frac{(Qrh \times 0.6463 \times Cu)}{Qe}$

Static water bodies in the absence of a site specific dilution (human health carcinogens and human health non-carcinogens):

Discharge from a pipe:

Discharge from a canal:

Critical Dilution = (2.8) Pw $\Pi^{1/2}$

Critical
Dilution = $(2.38)(Pw^{1/2})$ $(Pf)^{1/2}$

WLA =
$$\frac{(Cr-Cu) Pf^*}{(2.8) Pw \Pi^{1/2}}$$

 $WLA = \underline{(Cr-Cu) Pf^{1/2} + 2.38 Pw^{1/2}}$

* Pf is set equal to the mixing zone distance specified in LAC 33:IX.1115 for the static water body type, i.e., lake, estuary, Gulf of Mexico, etc.

Appendix B-2 LA0039390, AI No. 2366 Page 3

If a site specific dilution is used, WLA are calculated by subtracting Cu from Cr and dividing by the site specific dilution for human nealth and aquatic life criteria.

 $WLA = \frac{(Cr-Cu)}{\text{site specific dilution}}$

Longterm Average Calculations:

LTAa = WLAa X 0.32

LTAC = WLAC X 0.53

LTAh = WLAh

WQBL Calculations:

Select most limiting LTA to calculate daily max and monthly avg WQBL

If aquatic life LTA is more limiting:
Daily Maximum = Min(LTAa, LTAc) X 3.11
Monthly Average = Min(LTAc, LTAc) X 1.31

If human health LTA is more limiting:
Daily Maximum = LTAh X 2.38
Monthly Average = LTAh

Mass Balance Formulas:

mass (lbs/day): $(ug/L) \times 1/1000 \times (flow, MGD) \times 8.34 = lbs/day$

concentration(ug/L): $\frac{lbs/day}{(flow, MGD) \times 8.34 \times 1/1000} = ug/L$

The following is an explanation of the references in the spreadsheet.

- (*1) Parameter being screened.
- (*2) Instream concentration for the parameter being screened in ug/L. In the absence of accurate supporting data, the instream concentration is assumed to be zero (0).
- (*3) Monthly average effluent or technolgy value in concentration units of ug/L or mass units of lbs/day. Units determined on a case-by-case basis as appropriate to the particular situation.
- (*4) Daily maximum technology value in concentration units of ug/L or mass units of lbs/day. Units determined on a case-by-case basis as appropriate to the particular situation.
- (*5) Minimum analytical Quantification Levels (MQL's). Established in a letter dated January 27, 1994 from Wren Stenger of EPA Region 6 to Kilren Vidrine of LDEQ and from the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". The applicant must test for the parameter at a level at least as sensitive as the specified MQL. If this is not done, the MQL becomes the application value for screening purposes if the pollutant is suspected to be present

Appendix B-2 LA0039390, AI No. 2366 Page 4

on-site and/or in the waste stream. Units are in ug/l or lbs/day depending on the units of the effluent data.

- (*6) States whether effluent data is based on 95th percentile estimation. A
 "1" indicates that a 95th percentile approximation is being used, a "0"
 indicates that no 95th percentile approximation is being used.
- (*7) 95th percentile approximation multiplier (2.13). The constant, 2.13, was established in memorandum of understanding dated October 8, 1991 from Jack Ferguson of Region 6 to Jesse Chang of LDEQ and included in the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". This value is screened against effluent Water Quality Based Limits established in columns (*18) (*21). Units are in ug/l or lbs/day depending on the units of the measured effluent data.
- (*8) LAC 33.IX.1113.C.6, Table 1, Numerical Criteria for Specific Toxic Substances, freshwater (FW) or marine water (MW) (whichever is applicable) aquatic life protection, acute criteria. Units are specified. Some metals are hardness dependent. The hardness of the receiving stream shall generally be used, however a flow weighted hardness may be determined in site-specific situations. Dissolved metals are converted to Total metals using partition coefficients in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Similar to hardness, the TSS of the receiving stream shall generally be used, however, a flow weighted TSS may be determined in site-specific situations. Hardness Dependent Criteria:

Metal Formula

Metal

 Cadmium
 e (1.1280[ln(hardness)] - 1.6774)

 Chromium III
 e (0.8190[ln(hardness)] - 3.6880)

 Copper
 e (0.9422[ln(hardness)] - 1.3884)

 Lead
 e (1.2730[ln(hardness)] - 1.4600)

 Nickel
 e (0.8460[ln(hardness)] + 3.3612)

 Zinc
 e (0.8473[ln(hardness)] + 0.8604)

Dissolved to Total Metal Multipliers for Freshwater Streams (TSS dependent):

210,000	-24		- 				
Arsenic					TSS ^{-0.73}		
Cadmium					TSS ^{-1.13}		
Chromium III	1	+	3.36	Х	TSS ^{-0.93}	Х	TSS
Copper					TSS-0.74		
Lead					TSS ^{-0.80}		
Mercury					TSS-1.14		
Nickel					TSS ^{-0.57}		
Zinc	1	+	1.25	Х	TSS ^{-0.70}	Х	TSS

Multiplier

Dissolved to Total Metal Multipliers for Marine Environments (TSS dependent):

Metal Multiplier

Appendix 5-2 LA0039390, Al No. 2366 Page 5

```
Copper 1 + (10^{4.86} \text{ X TSS}^{-0.72} \text{ X TSS}) \text{ X } 10^{-6}

Lead 1 + (10^{6.06} \text{ X TSS}^{-0.85} \text{ X TSS}) \text{ X } 10^{-6}

Zinc 1 + (10^{5.36} \text{ X TSS}^{-0.52} \text{ X TSS}) \text{ X } 10^{-6}
```

If a metal does not have multiplier listed above, then the dissolved to total metal multiplier shall be 1.

Criteria for Specific Toxic Substances, freshwater (FW) or marine water (MW) (whichever is applicable) aquatic life protection, chronic criteria. Units are specified. Some metals are hardness dependent. The hardness of the receiving stream shall generally be used, however a flow weighted hardness may be determined in site-specific situations. Dissolved metals are converted to Total metals using partition coefficients in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Similar to hardness, the TSS of the receiving stream shall generally be used, however, a flow weighted TSS may be determined in site-specific situations.

Hardness dependent criteria:

Metal Formula

Cadmium	e (0.78\$2[ln(hardness)] -	3.4900)
Chromium III	e (0.8473 [In(hardness)] +	0.7614)
Copper	e (0.8545[ln(hardness)] -	1.3860)
Lead	e (1.2730[ln(hardness)] -	4.7050)
Nickel	e [0.8460[ln(hardness)] +	1.1645)
Zinc	e (0.8473[ln(hardness)] +	0.7614)

Dissolved to total metal multiplier formulas are the same as (*8), acute numerical criteria for aquatic life protection.

- (*10) LAC 33.IX.1113.C.6, Table 1, Numerical Criteria for Specific Toxic Substances, human health protection, drinking water supply (HHDW), non-drinking water supply criteria (HHNDW), or human health non-primary contact recreation (HHNPCR) (whichever is applicable). A DEQ and EPA approved Use Attainability Analysis is required before HHNPCR is used, e.g., Monte Sano Bayou. Units are specified.
- (*11) C if screened and carcinogenic. If a parameter is being screened and is carcinogenic a "C" will appear in this column.
- (*12) Wasteload Allocation for acute aquatic criteria (WLAa). Dilution type WLAa is calculated in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Negative values indicate that the receiving water is not meeting the acute aquatic numerical criteria for that parameter. Units are in ug/L. Dilution WLAa formulas for streams:

WLAa = $(Cr/Dilution Factor) - (Fs \times Orc \times 0.6463 \times Cu)$

Qε

Dilution WLAa formulas for static water bodies:

WLAa = (Cr-Cu)/Dilution Factor)

Cr represents aquatic acute numerical criteria from column (*8). If Cu data is unavailable or inadequate, assume Cu=0.

Appendix B-2 LA0039390, AI No. 2366 Page 6

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

(*13) Wasteload Allocation for chronic aquatic criteria (WLAc). Dilution type WLAc is calculated in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Negative values indicate that the receiving water is not meeting the chronic aquatic numerical criteria for that parameter. Units are in ug/L. Dilution WLAc formula:

WLAc = (Cr/Dilution Factor) - (Fs x Orc x 0.6463 x Cu)

0e

Dilution WLAc formulas for static water bodies:

WLAc = (Cr~Cu)/Dilution Factor)

Cr represents aquatic chronic numerical criteria from column (*9).

If Cu data is unavailable or inadequate, assume Cu=0.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

(*14) Wasteload Allocation for human health criteria (WLAh). Dilution type WLAh is calculated in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Negative values indicate that the receiving water is not meeting the human health numerical criteria for that parameter. Units are in ug/L. Dilution WLAh formula:

WLAh = (Cr/Dilution Factor) - (Fs x Orc. Orh x 0.6463 x Cu)

Qe

Dilution WLAh formulas for static water bodies:

WLAh = (Cr-Cu)/Dilution Factor)

Cr represents human health numerical criteria from column (*10).

If Cu data is unavailable or inadequate, assume Cu=0.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

(*15) Long Term Average for aquatic numerical criteria (LTAa). WLAa numbers are multiplied by a multiplier specified in the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards" which is 0.32. WLAa X 0.32 = LTAa.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

(*16) Long Term Average for chronic numerical criteria (LTAc). WLAc numbers are multiplied by a multiplier specified in the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards" which is 0.53. WLAc X 0.53 = LTAc.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

(*17) Long Term Average for human health numerical criteria (LTAh). WLAh
numbers are multiplied by a multiplier specified in the "Permitting
Guidance Document for Implementing Louisiana Surface Water Quality
Standards" which is 1. WLAC X 1 = LTAh.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

Appendix E-2 LA0039390, AI No. 2366 Page 7

- (*18) Limiting Acute. Chronic or Human Health LTA's. The most limiting LTA is placed in this column. Units are consistent with the WLA calculation. If standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then the type of limit, Aquatic or Human Health (HH), is indicated.
- (*19) End of pipe Water Quality Based Limit (WQBL) monthly average in terms of concentration, ug/L. If aquatic life criteria was the most limiting LTA then the limiting LTA is multiplied by 1.31 to determine the average WQBL (LTA_{limiting aquatic} X 1.31 = WQBL_{monthly average}). If human health criteria was the most limiting criteria then LTAh = WQBL_{monthly average}. If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then either the human health criteria or the chronic aquatic life criteria shall appear in this column depending on which is more limiting.
- (*20) End of pipe Water Quality Based Limit (WQBL) daily maxium in terms of concentration, ug/L. If aquatic life criteria was the most limiting LTA then the limiting LTA is multiplied by 3.11 to determine the daily maximum WQBL (LTA_{limitine aquatic} X 3.11 = WQBL_{daily max}). If human health criteria was the most limiting criteria then LTAh is multiplied by 2.38 to determine the daily maximum WQBL (LTA_{limiting aquatic} X 2.38 = WQBL_{daily max}). If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then either the human health criteria or the acute aquatic life criteria shall appear in this column depending on which is more limiting.
- (*21) End of pipe Water Quality Based Limit (WQBL) monthly average in terms of mass, lbs/day. The mass limit is determined by using the mass balance equations above. Monthly average WQBL, ug/l/1000 X facility flow, MGD X $8.34 \approx \text{monthly average WQBL}$, lbs/day.
- (*22) End of pipe Water Quality Based Limit (WQBL) monthly average in terms of mass, lbs/day. Mass limit is determined by using the mass balance equations above. Daily maximum WQBL, ug/l/1000 X facility flow, MGD X 8.34 = daily maximum WQBL, lbs/day.
- (*23) Indicates whether the screened effluent value(s) need water quality based limits for the parameter of concern. A "yes" indicates that a water quality based limit is needed in the permit; a "no" indicates the reverse.

Appendix C Effluent Data

IF NONE OF YOUR PROCESSES BELONG IN ANY OF THE ABOVE CATEGORIES, SKIP TO E. BELOW

Number of industrial category outfalls:

.7

SECTION III -	LABOR		NALYSIS ((cont.)	
Outfall-Number: 001			Eff	nent:	
Outrall Number: 001	MQL*	Gonce	lass – /day)		
		Monthly Average	Daily Maximum	Monthly Average	Daily Maximum
Volatile Organic Chemicals—EPA Metho	od 624 sugg	ested- = = :			
acrolein	50			0	0
acrylonitrile	50			0	0
benzene	1,0			0	0
bramaform	10.			0	0
carbon tetrachloride	10			0	0
chlorobenzene	50			0	0.
chlorodibromomethane	10			0	.0
chloroethane	10		-	0	0
2-chloroethylvinyl ether	50			0	0
chloroform	10			0	0
dichlorobromomethane	10	,		0	0
1,1-dichloroethane	10			0	0
1,2-dichloroethane	10			. 0	0
1,1-dichloroethylene	10			0	. 0
1,2-dichloropropane	10			0	0
1,3-Dichloropropylene	10			0	0
ethylbenzene	10			0	0
methyl bromide	50			0	0
methyl chloride	50			. 0	0
methylene chloride	20			0	0
1,1,2,2-tetrachloroethane	10			0	0
tetrachloroethylene	1'0			0	0
toluene -	10			0	0
1,2-trans-dichloroethylene	10			0	0
1,1,1-trichloroethane	10			0	.0
1,1,2-trichloroethane	10			0	0

SECTION III – LABORATORY ANALYSIS (cont.)									
Outfail Number: 1001			Eff	uent de					
		Goncer Goncer	tration	М	ass ¥				
Pollutani -	MOI -* (48/1)	(7)			lday).==;;=				
		Modifily Average	Daily Maximum	Average	Daily Maximum				
trichloroethene (trichloroethylene)	10		,	0	0				
vinyl chloride (chloroethylene)	10			0	0				
Acid Extractable Organic Chemicals—El	A Method	625 suggested							
2-chlorophenol	1.0			0	0				
3-chlorophenol	10			0	0				
4-chlorophenol	10			0 .	0				
2,3-dichlorophenol	10.			0	.0				
2,4-dichlorophenol	10			0	0				
2,5-dichiorophenol	10			0	0				
2,6-dichlorophenol	10			0	0				
3,4-dichlorophenol	10			0	0				
2,4-dimethylphenol	10			0	0				
2,4-dinitrophenol	50		,	0	.0				
2-methyl 4,6-dinitrophenol (4,6-dinitro- o-cresol)	50			0	0				
2-nitrophenol	20			0	0				
4-nitrophenol	50		· .	0	0				
4-chloro-3-methylphenol (p-chloro-m-cresol)	10	·	.	0	0				
pentachlorophenol	50			0	0				
phenol	10		<u></u> _	0	0				
2,4,6-trichlorophenol	10		and me T To	0	0				
Base/Neutral Extractable Organic Chemic	1	Method 625 sug	gested		· · · · · · · · · · · · · · · · · · ·				
acenaphthene	10			0	0				
acenaphthylene	. 10			0	0				
anthracene	10		··	0	0				
benzidine	-50		<u> </u>	0	.0				
benzo(a)anthracene	10	·		0	0				
benzo(a)pyrene	10		<u>. </u>	0	0				
3,4-benzo fluoranthene	10			0	0				
benzo(ghi)perylene	20		:	0	0				
benzo(k)fluoranthene	10			0	0				
bis(2-chloroethoxy)methane	10.		*. •	0	·O				

form_7018_r00 06/07/2004 Page 40 of 50 SCC-2

SECTION III - LABORATORY	ANALYSIS	(cont.)
--------------------------	----------	---------

Outfall Number: 1001			Em	ient .	
		Goncer	ntration	M	assi (day)
Pollutant	MQL*		70/ E E		
		Average	Daily Maximum	Average	Maximum
bis(2-chloroethyl)ether	10			0	0
bis(2-chloroisopropyl)ether	10	ļ		0	0
bis(2-ethylhexyl)phthalate	10			0	0
4-bromophenyl phenyl ether	10			0	0
butylbenzyl phthalate	3.0			0	0
2-chloronaphthalene	10			0	0
4-chlorophenyl phenyl ether	. 10			0	0
clurysene	10			0	0
dibenzo(a,h)anthracene	- 20			0 .	0
1,2-dichlorobenzene	10		, , , , , , , , , , , , , , , , , , , ,	0	0
1,3-dichlorobenzene	10			0	0
1,4-dichlorobenzene	10			0	0
3,3'-dichlorobenzidine	- 50			. 0	0
diethyl phthalate	10			0	0
dimethyl phthalate	10		·	0	0
di-n-butyl phthalate	10			0	0
2,4-dinitrotoluene	10			0	0
2,6-dinitrotoluene	10			0	0
di-n-octyl phthalate	10			<0.099	<0.099
1,2-diphenylhydrazine (as azobenzene)	20			0	0
fluoranthene	10			0	0
fluorene	10			0	0
hexachlorobenzene	10			0	0
hexachlorobutadiene	10			0	0
hexachlorocyclopentadiene	. 10			. 0	0
hexachloroethane	20			0	0
indeno(1,2,3-cd)pyrene	20			. 0	.0
isophorone	10			0	0
naphthalene	10			0	0
nitrobenzene	10			0	0
N-nitrosodimethylamine	50			0	0
N-nitrosodi-n-propylamine	.20			0	0

form_7018_r00 06/07/2004 Page 41 of 50 SCC-2

SECTION III - LABORATORY ANALYSIS (cont.)									
Outfall Number: 001				uent!					
Politian		Conce	ntration	N	ass				
Pollutant	MQI≇ (μα/l)			(lbs	(day)				
		Average	Maximum	Ayerage	Maximum				
N-nitrosodiphenylamine	20	,		0	0				
phenanthrene	10	,		. 0	0				
pyrene	10			0	0				
1,2,4-trichlorobenzene	10			0	0				
Pesticides & PCB's - EPA Method 608 re	quired		mateure en 1, toes mateure en 1, toes maggiètates en militer		vined with				
aldrin	0.05			0	0				
Arocior 1016 (PCB-1016)	1.0			0	0				
Aroclor 1221 (PCB-1221)	1.0			. 0	0				
Aroclor 1232 (PCB-1232)	1.0			0	0				
Aroclor 1242 (PCB-1242)	1.0			. 0	0				
Aroclor 1248 (PCB-1248)	1.0			0	0				
Aroclor 1254 (PCB-1254)	1.0			0	0				
Aroclor 1260 (PCB-1260)	1.0.			0	0				
alpha-BHC	0.05			0.002	0.002				
beta-BHC	0.05			0.003	0.003				
delta-BHC	0.05			0	0				
gamma-BHC	0.05			0	0				
chlordane	0.2			<0.005	<0.005				
4,4'DDT	0.1			0	0				
4,4'DDE	0.1		,	. 0	0				
4,4'DDD	0.1			00	0				
dieldrin	0.1			0	0				
alpha-endosulfan	0.1			0	0				
beta-endosulfan	0.1			<0.001	< 0.001				
endosulfan sulfate	0.1			0	O				
endrin	- 0.1	·		0	0				
endrin aldehyde	0.1			0	0				
heptachlor	0.05		·	0	0				
heptachlor epoxide	0.05			0	0				
Toxaphene	5.0			0	0				
2,4-dichlorophenocyacetic acid (2,4-D)		<u> </u>	<u> </u>						

Outfall Number: 001	MQE!	Conte	Effi	vent	
Pollutant Telephone	MQDV (228//)	Conce 6m	tration -		
Politiant is selected to the selected selected to the selected selected to the selected selec			p/()	M abs/	ass (day)
man starte government (Mension of Mension of Mension of the Mensio	for a land man a graph decide to a facilities.	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum
2-(2,4,5-trichlorophenoxy) propionic acid					
2,3,7,8-tetrachlorodibenzo-p-dioxin use EPA Method 1613	10 ppq				
Metals, Cyanide & Total Phenols-				· · · · · · · · · · · · · · · · · · ·	
Antimony, Total	60			0	0
Arsenic, Total	10	· .		0	0
Beryllium, Total	5	· 		0	0
Cadmium, Total	1			0.014	0.014
Chromium, Tota!	10			0.03	0.06
Chromium, Hexavalent	. 10			0.11	0.26
Copper, Total	10			0	.0
ead, Total	5			0	0
Mercury, Total	0.2			0.002	0.002
Vickel, Total (Marine)	5				
Vickel, Total [Freshwater]	40			0	0
Selenium, Total	5			0	0
Silver, Total	2			0	.0
Thallium, Total	10			0	0
Linc, Total	20			0	0
Cyanide, Total	20				
Cyanide, Free				0.18	0.18
Phenois, Total	5			0.33	3.5
addinonal Metals if expected to be presen	f≕Use EP∤	Approved Mo	etliod :		
Aluminum, Total					
Barium, Total					
Boron, Total					
Cobalt, Total					
ron, Dissolved					
Magnesium, Total					
Manganese, Total					
Molybdenum					
Fin, Total					

form_7018_r00 06/07/2004 Page 43 of 50 SCC-2

SECTION III - LABORATORY ANALYSIS (cont.)	name word in the state of the s
Outfall Number: 001 Effluent	ass (day)
Outial Number: 001 Mole Concentration Concentrati	Daily Maximum
Titanium, Total	

Minimum Quantification Level (MQL).

Appendix D Previous Permit Limits

Page 2 of 5 Permit No. LAD039390

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Outfall 001, the continuous discharge of treated process wastewater, treated stormwater, treated sanitary wastewater, and treated utility wastewater which discharges to the Mississippi River (estimated flow is 0.822 MGD).

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic Requirements

Discharge Limitations

Monitoring

Other Units (1bs/day, UNLESS STATED) (mg/L, UNLESS STATED)

		_					
	STORET	Monthly	Daily	Monthly	Daily	Heasurement	Sample
CONVENTIONAL	Code	Average	Maximum	Average	Maximum	Prequency	Туре
Flow-MGD	50050	Report	Report			Continuous	Recorder
pH Range Excursions	82581			0(*1)		Continuous	Recorder
(Continuous Monitoria	ng).						
Number of Events							
>60 Minutes				4441431		Continuous	Recorder
pH Range Excursions	82582			446(*1)	•	CONCINGOUS	Recorder
(Continuous Monitoria							
Monthly Total Accumu: Time in Minutes	LACEG						
pH Minimum/Maximum Valu				Report	Report	Continuous	Recorder
(Standard Units)	16200400			(Min)	(Max)		
BOD,	00310	460	828			3/week	24-hr. Composite
TSS	00530	368	577			2/week	24-hr. Composite
Oil & Grease	03582	134	252		-	3/week	Grab
COD	00340	3206	6192			3/week	24-hr. Composite
Ammonia (as N)	00610	236	518			1/week	24-hr. Composite
Sulfide (as S)	00745	2.3	5.1			1/week	Grab
Phenolic Compounds(*2)	32730	2.93	6.2			1/week	Grab
METALS(*2)							
Total Chromium	01034	3.44	9.87			l/year	24-hr. Composite
Chromium (5+)	01037	0.29	0.66			1/year	24-hr. Composite
Total Mercury	71900	5.7	13.5			1/year	24-hr. Composite
WHOLE EFFLUENT (ACUTE)				(Percent	. UNLESS S		
TOXICITY TESTING	-	STORET			Monthly A	vog.	48-Hour
Measurement	Sample					_	
	Code			Hinimm	Minimum	Frequency	Type (*3)
NOEC, Pass/Fail [0/1].	TEM6C			Report	Report	1/year	24-hr. Composite
Lethality, Static Re							
48-Hour Acute,							
Pimenhales promelas							

Pimephales promelas

PART I

Page 3 of 5

Permit No. LA0039390

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Outfall 001 continued)

Effluent Characteristic				Discharge	Limitation	Monitoring		
Requirements								
				Other uni	t 9			
WHOLE EFFLUENT (ACUTE)		(Percent %, UNLESS STATED)						
TOXICITY TESTING		STORET			Monthly A	vg	48-Hour	
Measurement	Sample							
	Code			Minimum	Minimum	Prequency	Type (*3)	
NOEC, Value (%), 24-hr. Composite Lethality, Static Ren 48-Hour Acute, Pimephales promelas	ewal,	TOM6C			Report	Report	1/year	
NOEC. Pass/Fail [0/1]. Lethality, Static Ren 48-Hour Acute. Daphnia pulex				Report	Report	l/year	24-hr. Composite	
NOEC. Value [%], 24-hr. Composite Lethality, Static Ren 48-Hour Acute Daphnia pulex	ewal,	αєнот			Report	Report	1/year	

There shall be no discharge of floating solids or visible foam in other than trace amounts.

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Outfall 001, at the point of discharge from the treatment facility prior to combining with the waters of the Mississippi River.

POOTNOTE(5):

- (*1) The pH shall be within the range of 6.0 9.0 standard units at all times subject to the continuous monitoring pH range excursion provisions at Part II.I.
- ('2) See Part II.J.
- (*3) See Part II.O.3.d.

.----

Page 4 of 5 Permit No. LA0039390

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Outfall 002, the intermittent discharge of low contamination potential stormwater runoff from the northern lay down area, and parking lot.

Outfall 00), the intermittent discharge of low contamination potential stormwater runoff from the boiler house, maintenance shop area and administrative parking lot.

Outfall 004, the intermittent discharge of low contamination potential stormwater runoff from the west central plant area and the storage lagoon.

Outfall 005, the intermittent discharge of low contamination potential stormwater runoff from non-process areas surrounding the amine and sulphur units.

Outfall 006, the intermittent discharge of low contamination potential stormwater runoff from the tank farm (south central area of the facility) and previously monitored uncontaminated storm water runoff from the storage lagoon.

Outfall 007, the intermittent discharge of low contamination potential stormwater runoff from the tank farm area.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic		Discharge	Limitation	Monitoring Requirements				
		(lbs/day,	UNLESS ST	ATED) (mg/L, UNLESS ST		ATED)		
	STORET	Monthly	Daily	Monthly	Daily	Measurement	Sample	
	Code	Average Maximum		Average	Maximum	Maximum Frequency(*1		
Flow-MGD	50050	Report	Report			1/quarter	Estimate	
TOC	00680		~		50	1/quarter	Grab	
Oil and Grease	03582		~		15	I/quarter	Grab	
pH Minimum/Maximum Va (Standard Units)	lues00400	••-		6.0 (*2) (Min)	9.0 (*2) (Max)	1/quarter	Grab	

There shall be no discharge of floating solids or visible foam in other than trace amounts.

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Outfall 802, at the point of discharge from the oil and water separator at the northern lay down area of the facility, prior to mixing with waters of the Intracoastal Canal via local drainage.

Outfall 003, at the point of discharge from the oil and water separator at the boiler control house and maintenance shop area prior to mixing with waters of the Intracoastal Canal via local drainage.

Outfall 004, at the point of discharge from the oil and water separator at the storage lagoon prior to mixing with waters of the Intracoastal Canal via local drainage.

Outfall 005, at the point of discharge from the oil and water separator at the southwest corner of the facility prior to mixing with waters of the Intracoastal Canal via local drainage.

Outfall 006, at the point of discharge from the oil and water separator in the south central area of the facility prior to mixing with waters of the Intracoastal Canal via local drainage.

Outfall 007, at the point of discharge from the oil and water separator at the light ends storage area and adjacent areas prior to mixing with waters of the Intracoastal Canal via local drainage.

PART :

Page 5 of 5 Permit No. LA0039390

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

FOOTNOTE(S):

- (*I) When discharging.
- [*2] The permittee shall report on the Discharge Monitoring Reports both the minimum and maximum instantaneous pH values measured.

Appendix E Biomonitoring Recommendation

BIOMONITORING FREQUENCY RECOMMENDATION AND RATIONALE FOR ADDITIONAL REQUIREMENTS

Permit Number: LA0039390

Facility Name: Placid Refining Company, LLC - Port Allen Refinery

Previous Critical Dilution: 0.0269% Proposed Critical Dilution: 0.028% (10:1 ACR)

Date of Review: 12/09/05; revised 03/20/06 Name of Reviewer: Kim Gunderson

Recommended Frequency by Species:

Pimephales promelas (Fathead minnow): Once/Year¹
Daphnia pulex (water flea): Once/Year¹

oupuniu putex (water nea). Once/s ca

Recommended Dilution Series: 0.012%, 0.016%, 0.021%, 0.028%, and 0.037%

Number of Tests Performed during previous 5 years by Species:

Pimephales promelas (Fathead minnow): 5

Daphnia pulex (water flea):

Daphnia magna (water flea): N/A - Testing of species was not required

Ceriodaphnia dubia (water flea):

Number of Failed Tests during previous 5 years by Species:

Pimephales promelas (Fathead minnow): No failures on file during the past 5 years

Daphnia pulex (water flea): No failures on file during the past 5 years

Daphnia magna (water flea): N/A – Testing of species was not required

Ceriodaphnia dubia (water flea): No failures on file during the past 5 years

Failed Test Dates during previous 5 years by Species:

Pimephales promelas (Fathead minnow): No failures on file during the past 5 years

Daphnia pulex (water flea): No failures on file during the past 5 years

Daphnia magna (water flea): N/A – Testing of species was not required

Ceriodaphnia dubia (water flea): No failures on file during the past 5 years

Previous TRE Activities: N/A – No previous TRE Activities

An acute critical dilution of less than 1% shall have an established monitoring frequency of once/year.

² Testing conducted during the period 01/01/00 – 12/31/00 used the previous biomonitoring requirements of freshwater chronic with a critical dilution of 0.009%

Additional Requirements (including WET Limits) Rationale / Comments Concerning Permitting:

Placid Refining Company, LLC owns and operates a petroleum refinery in Port Allen, West Baton Rouge Parish, Louisiana. LPDES Permit LA0039390, effective March 1, 2001, contained freshwater acute biomonitoring as an effluent characteristic of Outfall 001 for Daphnia pulex and Pimephales promelas. The effluent series consisted of 0.0113%, 0.0151%, 0.0202%, 0.0269%, and 0.036% concentrations, with 0.0269% being defined as the critical dilution. The testing was to be performed once per year. Data on file indicate that the permittee has complied with the biomonitoring requirements contained in LA0039390 with no toxicity failures in the last five years.

It is recommended that freshwater acute biomonitoring continue to be an effluent characteristic of Outfall 001 (discharge of 0.844 MGD of treated process wastewater, including stormwater, utility wastewater, and sanitary wastewater) in LA0039390. The effluent dilution series shall be 0.012%, 0.016%, 0.021%, 0.028%, and 0.037% concentrations, with 0.028% being defined as the critical dilution (the 10:1 Acute-to-Chronic ratio has been implemented because the critical dilution is less than 5%). Since the proposed critical dilution is less than 1% (10:1 ACR), the biomonitoring frequency shall be once per year for Daphnia pulex and Pimephales promelas.

This recommendation is in accordance with the LDEQ/OES Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards, EPA Region 6 Post-Third Round Whole Effluent Toxicity Testing Frequencies (Revised June 30, 2000), and the Best Professional Judgement (BPJ) of the reviewer.